CFD modeling improves burner performance
The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on th...
Gespeichert in:
Veröffentlicht in: | Industrial Heating 2003-04, Vol.70 (4), p.41-44 |
---|---|
Hauptverfasser: | , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 4 |
container_start_page | 41 |
container_title | Industrial Heating |
container_volume | 70 |
creator | Feese, Jim Lisin, Felix |
description | The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry. |
format | Magazinearticle |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_reports_217283437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A100391838</galeid><sourcerecordid>A100391838</sourcerecordid><originalsourceid>FETCH-LOGICAL-g238t-e47f76c60324d88b70a400ea2aa069eff645426032c5517e60abc98542816ee83</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFffoV7USyHJpEl6XKqrwoIXPZe0OymVNqlJ6_ObZT158DTM_398DHNGMg5cF0pQOCcZpawqNChxSa5i_EwrlJxl5KHePeaTP-A4uD4fpjn4b4x5uwaHIZ8xWB8m4zq8JhfWjBFvfueGfOye3uuXYv_2_Fpv90XPQS8FCmWV7CQFLg5at4oaQSkabgyVFVorRSn4se7KkimU1LRdpVOmmUTUsCG3J2-65GvFuDQBZx-W2HCmuAYBKjH3f5hpiB2Oo3Ho19goAYyBYkfb3b8kV5pKoDSBxQnszYjN4Kxfgul6TF8wo3dohxRvWSKrpNXwA0e-Zi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>217283437</pqid></control><display><type>magazinearticle</type><title>CFD modeling improves burner performance</title><source>Business Source Complete</source><source>ProQuest Central UK/Ireland</source><creator>Feese, Jim ; Lisin, Felix</creator><contributor>WCA</contributor><creatorcontrib>Feese, Jim ; Lisin, Felix ; WCA</creatorcontrib><description>The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.</description><identifier>ISSN: 0019-8374</identifier><identifier>EISSN: 2328-7403</identifier><identifier>CODEN: INHTAZ</identifier><language>eng</language><publisher>Troy: BNP Media</publisher><subject>Computer based modeling ; Computer software industry ; Design ; Emission standards ; Emissions ; Flow velocity ; Flue gas ; Fluid dynamics ; Furnaces ; Gases ; Heat ; Heating, ventilation, and air conditioning industry ; Laboratories ; Metalworking industry ; Natural gas ; Process engineering ; Product information ; Temperature</subject><ispartof>Industrial Heating, 2003-04, Vol.70 (4), p.41-44</ispartof><rights>COPYRIGHT 2003 BNP Media</rights><rights>Copyright Business News Publishing Company Apr 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/217283437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>312,777,781,788,64366,64367,64372,72218</link.rule.ids></links><search><contributor>WCA</contributor><creatorcontrib>Feese, Jim</creatorcontrib><creatorcontrib>Lisin, Felix</creatorcontrib><title>CFD modeling improves burner performance</title><title>Industrial Heating</title><description>The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.</description><subject>Computer based modeling</subject><subject>Computer software industry</subject><subject>Design</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Flow velocity</subject><subject>Flue gas</subject><subject>Fluid dynamics</subject><subject>Furnaces</subject><subject>Gases</subject><subject>Heat</subject><subject>Heating, ventilation, and air conditioning industry</subject><subject>Laboratories</subject><subject>Metalworking industry</subject><subject>Natural gas</subject><subject>Process engineering</subject><subject>Product information</subject><subject>Temperature</subject><issn>0019-8374</issn><issn>2328-7403</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2003</creationdate><recordtype>magazinearticle</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKxDAQhoMoWFffoV7USyHJpEl6XKqrwoIXPZe0OymVNqlJ6_ObZT158DTM_398DHNGMg5cF0pQOCcZpawqNChxSa5i_EwrlJxl5KHePeaTP-A4uD4fpjn4b4x5uwaHIZ8xWB8m4zq8JhfWjBFvfueGfOye3uuXYv_2_Fpv90XPQS8FCmWV7CQFLg5at4oaQSkabgyVFVorRSn4se7KkimU1LRdpVOmmUTUsCG3J2-65GvFuDQBZx-W2HCmuAYBKjH3f5hpiB2Oo3Ho19goAYyBYkfb3b8kV5pKoDSBxQnszYjN4Kxfgul6TF8wo3dohxRvWSKrpNXwA0e-Zi4</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Feese, Jim</creator><creator>Lisin, Felix</creator><general>BNP Media</general><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7X5</scope><scope>7XB</scope><scope>883</scope><scope>8A3</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0F</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20030401</creationdate><title>CFD modeling improves burner performance</title><author>Feese, Jim ; Lisin, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g238t-e47f76c60324d88b70a400ea2aa069eff645426032c5517e60abc98542816ee83</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer based modeling</topic><topic>Computer software industry</topic><topic>Design</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Flow velocity</topic><topic>Flue gas</topic><topic>Fluid dynamics</topic><topic>Furnaces</topic><topic>Gases</topic><topic>Heat</topic><topic>Heating, ventilation, and air conditioning industry</topic><topic>Laboratories</topic><topic>Metalworking industry</topic><topic>Natural gas</topic><topic>Process engineering</topic><topic>Product information</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Feese, Jim</creatorcontrib><creatorcontrib>Lisin, Felix</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Industrial Heating</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feese, Jim</au><au>Lisin, Felix</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD modeling improves burner performance</atitle><jtitle>Industrial Heating</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>70</volume><issue>4</issue><spage>41</spage><epage>44</epage><pages>41-44</pages><issn>0019-8374</issn><eissn>2328-7403</eissn><coden>INHTAZ</coden><abstract>The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.</abstract><cop>Troy</cop><pub>BNP Media</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-8374 |
ispartof | Industrial Heating, 2003-04, Vol.70 (4), p.41-44 |
issn | 0019-8374 2328-7403 |
language | eng |
recordid | cdi_proquest_reports_217283437 |
source | Business Source Complete; ProQuest Central UK/Ireland |
subjects | Computer based modeling Computer software industry Design Emission standards Emissions Flow velocity Flue gas Fluid dynamics Furnaces Gases Heat Heating, ventilation, and air conditioning industry Laboratories Metalworking industry Natural gas Process engineering Product information Temperature |
title | CFD modeling improves burner performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20modeling%20improves%20burner%20performance&rft.jtitle=Industrial%20Heating&rft.au=Feese,%20Jim&rft.date=2003-04-01&rft.volume=70&rft.issue=4&rft.spage=41&rft.epage=44&rft.pages=41-44&rft.issn=0019-8374&rft.eissn=2328-7403&rft.coden=INHTAZ&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA100391838%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217283437&rft_id=info:pmid/&rft_galeid=A100391838&rfr_iscdi=true |