CFD modeling improves burner performance

The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial Heating 2003-04, Vol.70 (4), p.41-44
Hauptverfasser: Feese, Jim, Lisin, Felix
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 4
container_start_page 41
container_title Industrial Heating
container_volume 70
creator Feese, Jim
Lisin, Felix
description The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.
format Magazinearticle
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_reports_217283437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A100391838</galeid><sourcerecordid>A100391838</sourcerecordid><originalsourceid>FETCH-LOGICAL-g238t-e47f76c60324d88b70a400ea2aa069eff645426032c5517e60abc98542816ee83</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFffoV7USyHJpEl6XKqrwoIXPZe0OymVNqlJ6_ObZT158DTM_398DHNGMg5cF0pQOCcZpawqNChxSa5i_EwrlJxl5KHePeaTP-A4uD4fpjn4b4x5uwaHIZ8xWB8m4zq8JhfWjBFvfueGfOye3uuXYv_2_Fpv90XPQS8FCmWV7CQFLg5at4oaQSkabgyVFVorRSn4se7KkimU1LRdpVOmmUTUsCG3J2-65GvFuDQBZx-W2HCmuAYBKjH3f5hpiB2Oo3Ho19goAYyBYkfb3b8kV5pKoDSBxQnszYjN4Kxfgul6TF8wo3dohxRvWSKrpNXwA0e-Zi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>217283437</pqid></control><display><type>magazinearticle</type><title>CFD modeling improves burner performance</title><source>Business Source Complete</source><source>ProQuest Central UK/Ireland</source><creator>Feese, Jim ; Lisin, Felix</creator><contributor>WCA</contributor><creatorcontrib>Feese, Jim ; Lisin, Felix ; WCA</creatorcontrib><description>The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.</description><identifier>ISSN: 0019-8374</identifier><identifier>EISSN: 2328-7403</identifier><identifier>CODEN: INHTAZ</identifier><language>eng</language><publisher>Troy: BNP Media</publisher><subject>Computer based modeling ; Computer software industry ; Design ; Emission standards ; Emissions ; Flow velocity ; Flue gas ; Fluid dynamics ; Furnaces ; Gases ; Heat ; Heating, ventilation, and air conditioning industry ; Laboratories ; Metalworking industry ; Natural gas ; Process engineering ; Product information ; Temperature</subject><ispartof>Industrial Heating, 2003-04, Vol.70 (4), p.41-44</ispartof><rights>COPYRIGHT 2003 BNP Media</rights><rights>Copyright Business News Publishing Company Apr 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/217283437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>312,777,781,788,64366,64367,64372,72218</link.rule.ids></links><search><contributor>WCA</contributor><creatorcontrib>Feese, Jim</creatorcontrib><creatorcontrib>Lisin, Felix</creatorcontrib><title>CFD modeling improves burner performance</title><title>Industrial Heating</title><description>The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.</description><subject>Computer based modeling</subject><subject>Computer software industry</subject><subject>Design</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Flow velocity</subject><subject>Flue gas</subject><subject>Fluid dynamics</subject><subject>Furnaces</subject><subject>Gases</subject><subject>Heat</subject><subject>Heating, ventilation, and air conditioning industry</subject><subject>Laboratories</subject><subject>Metalworking industry</subject><subject>Natural gas</subject><subject>Process engineering</subject><subject>Product information</subject><subject>Temperature</subject><issn>0019-8374</issn><issn>2328-7403</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2003</creationdate><recordtype>magazinearticle</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKxDAQhoMoWFffoV7USyHJpEl6XKqrwoIXPZe0OymVNqlJ6_ObZT158DTM_398DHNGMg5cF0pQOCcZpawqNChxSa5i_EwrlJxl5KHePeaTP-A4uD4fpjn4b4x5uwaHIZ8xWB8m4zq8JhfWjBFvfueGfOye3uuXYv_2_Fpv90XPQS8FCmWV7CQFLg5at4oaQSkabgyVFVorRSn4se7KkimU1LRdpVOmmUTUsCG3J2-65GvFuDQBZx-W2HCmuAYBKjH3f5hpiB2Oo3Ho19goAYyBYkfb3b8kV5pKoDSBxQnszYjN4Kxfgul6TF8wo3dohxRvWSKrpNXwA0e-Zi4</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Feese, Jim</creator><creator>Lisin, Felix</creator><general>BNP Media</general><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7X5</scope><scope>7XB</scope><scope>883</scope><scope>8A3</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0F</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20030401</creationdate><title>CFD modeling improves burner performance</title><author>Feese, Jim ; Lisin, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g238t-e47f76c60324d88b70a400ea2aa069eff645426032c5517e60abc98542816ee83</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer based modeling</topic><topic>Computer software industry</topic><topic>Design</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Flow velocity</topic><topic>Flue gas</topic><topic>Fluid dynamics</topic><topic>Furnaces</topic><topic>Gases</topic><topic>Heat</topic><topic>Heating, ventilation, and air conditioning industry</topic><topic>Laboratories</topic><topic>Metalworking industry</topic><topic>Natural gas</topic><topic>Process engineering</topic><topic>Product information</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Feese, Jim</creatorcontrib><creatorcontrib>Lisin, Felix</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Industrial Heating</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feese, Jim</au><au>Lisin, Felix</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD modeling improves burner performance</atitle><jtitle>Industrial Heating</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>70</volume><issue>4</issue><spage>41</spage><epage>44</epage><pages>41-44</pages><issn>0019-8374</issn><eissn>2328-7403</eissn><coden>INHTAZ</coden><abstract>The computed velocity distribution of the baseline burner (standard SVG-125, 1 MMBtu/hr at 10% excess air and 16osig) is shown in Fig. 6. The CFD computed mean burner nozzle exit velocity is 660 ft/s. Based on laboratory exit gas-temperature profile measurements, gas density calculations based on the ideal gas equation of state and subsequent exit velocity determination via conservation of mass, the average calculated exit velocity was 567 ft/s, which [Hauck] considers the highest in the industry.</abstract><cop>Troy</cop><pub>BNP Media</pub><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-8374
ispartof Industrial Heating, 2003-04, Vol.70 (4), p.41-44
issn 0019-8374
2328-7403
language eng
recordid cdi_proquest_reports_217283437
source Business Source Complete; ProQuest Central UK/Ireland
subjects Computer based modeling
Computer software industry
Design
Emission standards
Emissions
Flow velocity
Flue gas
Fluid dynamics
Furnaces
Gases
Heat
Heating, ventilation, and air conditioning industry
Laboratories
Metalworking industry
Natural gas
Process engineering
Product information
Temperature
title CFD modeling improves burner performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20modeling%20improves%20burner%20performance&rft.jtitle=Industrial%20Heating&rft.au=Feese,%20Jim&rft.date=2003-04-01&rft.volume=70&rft.issue=4&rft.spage=41&rft.epage=44&rft.pages=41-44&rft.issn=0019-8374&rft.eissn=2328-7403&rft.coden=INHTAZ&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA100391838%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217283437&rft_id=info:pmid/&rft_galeid=A100391838&rfr_iscdi=true