Breaking down tolerance stack-up. (Brigham Young University's tolerance model)

Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine design 1997-04, Vol.69 (8), p.71-74
Hauptverfasser: Merkley, Karl, Chase, Ken
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 8
container_start_page 71
container_title Machine design
container_volume 69
creator Merkley, Karl
Chase, Ken
description Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.
format Magazinearticle
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_reports_217176845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A19498107</galeid><sourcerecordid>A19498107</sourcerecordid><originalsourceid>FETCH-LOGICAL-g485t-83f450a6a4e129cbdda68e3b25981ac0b2d00f63f4680b95469c19d28f55a89d3</originalsourceid><addsrcrecordid>eNqN0V9LwzAQAPAiCs7pd6gvbsIqSZuk6eM2dA7GBuoefCpZeq11WTOb1D_f3sh82GTIuIc7jh8Hd3fktXBCSJDQOD72WgiFrsaYnHpnxrwihEOMUcubDmoQy7Iq_Ex_VL7VCmpRSfCNFXIZNOsbvzuoy-JFrPxn3Tg3r8p3qE1pvzpmy690Bur63DvJhTJw8Zvb3vzu9ml4H0xmo_GwPwkKwqkNeJQTigQTBHCYyEWWCcYhWoQ04VhItAgzhHLmFONokVDCEomTLOQ5pYInWdT2Ljdz17V-a8DYtIa1rq1JQxzjmHFCnen8MavSSFBKVKAbk8aEYUwZwQfIiEWcoB959a8MGYkxxdzB3gYWQkFaVrm2tZAFVO5cSleQl67ddx9yC6PY8WAPd5HBqpT7fHfHO2Lh0xaiMSYdPz4cTqeHUj6a7NDePiq1UlBA6p49nG3xb05MyKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>217176845</pqid></control><display><type>magazinearticle</type><title>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</title><source>EBSCOhost Business Source Complete</source><creator>Merkley, Karl ; Chase, Ken</creator><creatorcontrib>Merkley, Karl ; Chase, Ken</creatorcontrib><description>Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.</description><identifier>ISSN: 0024-9114</identifier><identifier>EISSN: 1944-9577</identifier><identifier>CODEN: MADEAP</identifier><language>eng</language><publisher>Nashville: Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</publisher><subject>Computer aided analysis ; Finite element analysis ; Finite element method ; Fits and tolerances ; Kinematics ; Mathematical models ; Measurement ; Statistical methods ; Stiffness matrix ; Stress ; Stress analysis ; Tolerance (Engineering) ; Yield stress</subject><ispartof>Machine design, 1997-04, Vol.69 (8), p.71-74</ispartof><rights>COPYRIGHT 1997 Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</rights><rights>COPYRIGHT 1997 Endeavor Business Media</rights><rights>Copyright Penton Publishing Apr 17, 1997</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Merkley, Karl</creatorcontrib><creatorcontrib>Chase, Ken</creatorcontrib><title>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</title><title>Machine design</title><addtitle>Machine Design</addtitle><description>Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.</description><subject>Computer aided analysis</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fits and tolerances</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Statistical methods</subject><subject>Stiffness matrix</subject><subject>Stress</subject><subject>Stress analysis</subject><subject>Tolerance (Engineering)</subject><subject>Yield stress</subject><issn>0024-9114</issn><issn>1944-9577</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1997</creationdate><recordtype>magazinearticle</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0V9LwzAQAPAiCs7pd6gvbsIqSZuk6eM2dA7GBuoefCpZeq11WTOb1D_f3sh82GTIuIc7jh8Hd3fktXBCSJDQOD72WgiFrsaYnHpnxrwihEOMUcubDmoQy7Iq_Ex_VL7VCmpRSfCNFXIZNOsbvzuoy-JFrPxn3Tg3r8p3qE1pvzpmy690Bur63DvJhTJw8Zvb3vzu9ml4H0xmo_GwPwkKwqkNeJQTigQTBHCYyEWWCcYhWoQ04VhItAgzhHLmFONokVDCEomTLOQ5pYInWdT2Ljdz17V-a8DYtIa1rq1JQxzjmHFCnen8MavSSFBKVKAbk8aEYUwZwQfIiEWcoB959a8MGYkxxdzB3gYWQkFaVrm2tZAFVO5cSleQl67ddx9yC6PY8WAPd5HBqpT7fHfHO2Lh0xaiMSYdPz4cTqeHUj6a7NDePiq1UlBA6p49nG3xb05MyKY</recordid><startdate>19970417</startdate><enddate>19970417</enddate><creator>Merkley, Karl</creator><creator>Chase, Ken</creator><general>Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</general><general>Endeavor Business Media</general><scope>8GL</scope><scope>ISN</scope><scope>ISR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>JG9</scope><scope>7TC</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0F</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19970417</creationdate><title>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</title><author>Merkley, Karl ; Chase, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g485t-83f450a6a4e129cbdda68e3b25981ac0b2d00f63f4680b95469c19d28f55a89d3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computer aided analysis</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fits and tolerances</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Statistical methods</topic><topic>Stiffness matrix</topic><topic>Stress</topic><topic>Stress analysis</topic><topic>Tolerance (Engineering)</topic><topic>Yield stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Merkley, Karl</creatorcontrib><creatorcontrib>Chase, Ken</creatorcontrib><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Machine design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkley, Karl</au><au>Chase, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</atitle><jtitle>Machine design</jtitle><addtitle>Machine Design</addtitle><date>1997-04-17</date><risdate>1997</risdate><volume>69</volume><issue>8</issue><spage>71</spage><epage>74</epage><pages>71-74</pages><issn>0024-9114</issn><eissn>1944-9577</eissn><coden>MADEAP</coden><abstract>Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.</abstract><cop>Nashville</cop><pub>Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</pub><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9114
ispartof Machine design, 1997-04, Vol.69 (8), p.71-74
issn 0024-9114
1944-9577
language eng
recordid cdi_proquest_reports_217176845
source EBSCOhost Business Source Complete
subjects Computer aided analysis
Finite element analysis
Finite element method
Fits and tolerances
Kinematics
Mathematical models
Measurement
Statistical methods
Stiffness matrix
Stress
Stress analysis
Tolerance (Engineering)
Yield stress
title Breaking down tolerance stack-up. (Brigham Young University's tolerance model)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20down%20tolerance%20stack-up.%20(Brigham%20Young%20University's%20tolerance%20model)&rft.jtitle=Machine%20design&rft.au=Merkley,%20Karl&rft.date=1997-04-17&rft.volume=69&rft.issue=8&rft.spage=71&rft.epage=74&rft.pages=71-74&rft.issn=0024-9114&rft.eissn=1944-9577&rft.coden=MADEAP&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA19498107%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217176845&rft_id=info:pmid/&rft_galeid=A19498107&rfr_iscdi=true