Breaking down tolerance stack-up. (Brigham Young University's tolerance model)
Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional compl...
Gespeichert in:
Veröffentlicht in: | Machine design 1997-04, Vol.69 (8), p.71-74 |
---|---|
Hauptverfasser: | , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 8 |
container_start_page | 71 |
container_title | Machine design |
container_volume | 69 |
creator | Merkley, Karl Chase, Ken |
description | Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described. |
format | Magazinearticle |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_reports_217176845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A19498107</galeid><sourcerecordid>A19498107</sourcerecordid><originalsourceid>FETCH-LOGICAL-g485t-83f450a6a4e129cbdda68e3b25981ac0b2d00f63f4680b95469c19d28f55a89d3</originalsourceid><addsrcrecordid>eNqN0V9LwzAQAPAiCs7pd6gvbsIqSZuk6eM2dA7GBuoefCpZeq11WTOb1D_f3sh82GTIuIc7jh8Hd3fktXBCSJDQOD72WgiFrsaYnHpnxrwihEOMUcubDmoQy7Iq_Ex_VL7VCmpRSfCNFXIZNOsbvzuoy-JFrPxn3Tg3r8p3qE1pvzpmy690Bur63DvJhTJw8Zvb3vzu9ml4H0xmo_GwPwkKwqkNeJQTigQTBHCYyEWWCcYhWoQ04VhItAgzhHLmFONokVDCEomTLOQ5pYInWdT2Ljdz17V-a8DYtIa1rq1JQxzjmHFCnen8MavSSFBKVKAbk8aEYUwZwQfIiEWcoB959a8MGYkxxdzB3gYWQkFaVrm2tZAFVO5cSleQl67ddx9yC6PY8WAPd5HBqpT7fHfHO2Lh0xaiMSYdPz4cTqeHUj6a7NDePiq1UlBA6p49nG3xb05MyKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>217176845</pqid></control><display><type>magazinearticle</type><title>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</title><source>EBSCOhost Business Source Complete</source><creator>Merkley, Karl ; Chase, Ken</creator><creatorcontrib>Merkley, Karl ; Chase, Ken</creatorcontrib><description>Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.</description><identifier>ISSN: 0024-9114</identifier><identifier>EISSN: 1944-9577</identifier><identifier>CODEN: MADEAP</identifier><language>eng</language><publisher>Nashville: Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</publisher><subject>Computer aided analysis ; Finite element analysis ; Finite element method ; Fits and tolerances ; Kinematics ; Mathematical models ; Measurement ; Statistical methods ; Stiffness matrix ; Stress ; Stress analysis ; Tolerance (Engineering) ; Yield stress</subject><ispartof>Machine design, 1997-04, Vol.69 (8), p.71-74</ispartof><rights>COPYRIGHT 1997 Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</rights><rights>COPYRIGHT 1997 Endeavor Business Media</rights><rights>Copyright Penton Publishing Apr 17, 1997</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Merkley, Karl</creatorcontrib><creatorcontrib>Chase, Ken</creatorcontrib><title>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</title><title>Machine design</title><addtitle>Machine Design</addtitle><description>Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.</description><subject>Computer aided analysis</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fits and tolerances</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Statistical methods</subject><subject>Stiffness matrix</subject><subject>Stress</subject><subject>Stress analysis</subject><subject>Tolerance (Engineering)</subject><subject>Yield stress</subject><issn>0024-9114</issn><issn>1944-9577</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1997</creationdate><recordtype>magazinearticle</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0V9LwzAQAPAiCs7pd6gvbsIqSZuk6eM2dA7GBuoefCpZeq11WTOb1D_f3sh82GTIuIc7jh8Hd3fktXBCSJDQOD72WgiFrsaYnHpnxrwihEOMUcubDmoQy7Iq_Ex_VL7VCmpRSfCNFXIZNOsbvzuoy-JFrPxn3Tg3r8p3qE1pvzpmy690Bur63DvJhTJw8Zvb3vzu9ml4H0xmo_GwPwkKwqkNeJQTigQTBHCYyEWWCcYhWoQ04VhItAgzhHLmFONokVDCEomTLOQ5pYInWdT2Ljdz17V-a8DYtIa1rq1JQxzjmHFCnen8MavSSFBKVKAbk8aEYUwZwQfIiEWcoB959a8MGYkxxdzB3gYWQkFaVrm2tZAFVO5cSleQl67ddx9yC6PY8WAPd5HBqpT7fHfHO2Lh0xaiMSYdPz4cTqeHUj6a7NDePiq1UlBA6p49nG3xb05MyKY</recordid><startdate>19970417</startdate><enddate>19970417</enddate><creator>Merkley, Karl</creator><creator>Chase, Ken</creator><general>Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</general><general>Endeavor Business Media</general><scope>8GL</scope><scope>ISN</scope><scope>ISR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>JG9</scope><scope>7TC</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0F</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19970417</creationdate><title>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</title><author>Merkley, Karl ; Chase, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g485t-83f450a6a4e129cbdda68e3b25981ac0b2d00f63f4680b95469c19d28f55a89d3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computer aided analysis</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fits and tolerances</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Statistical methods</topic><topic>Stiffness matrix</topic><topic>Stress</topic><topic>Stress analysis</topic><topic>Tolerance (Engineering)</topic><topic>Yield stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Merkley, Karl</creatorcontrib><creatorcontrib>Chase, Ken</creatorcontrib><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Machine design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkley, Karl</au><au>Chase, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking down tolerance stack-up. (Brigham Young University's tolerance model)</atitle><jtitle>Machine design</jtitle><addtitle>Machine Design</addtitle><date>1997-04-17</date><risdate>1997</risdate><volume>69</volume><issue>8</issue><spage>71</spage><epage>74</epage><pages>71-74</pages><issn>0024-9114</issn><eissn>1944-9577</eissn><coden>MADEAP</coden><abstract>Tolerance variation in assemblies results from 3 sources: size, form and kinematics. During assembly, tolerances in each part can accumulate to create large residual stack-ups, inducing poor product performance and high cost. Flexible assemblies containing nonrigid parts, produce an additional complexity to tolerance prediction. Several tolerance models account for the stack-up problem in assemblies with rigid components and point to a variety of solutions. One method, however, has been applied early in the design process and calculates stresses in rigid assemblies consisting of flexible parts. The tolerance model developed at Brigham Young University, based on a Direct Linearization Method (DLM), uses a linear approximation of nonlinear assembly functions. The DLM modeler is available in TI/TOL 3D+ from Texas Instruments. This package is integrated with the parametric capabilities of Pro/Engineer from Parametric Technologies Corp. The technique is described.</abstract><cop>Nashville</cop><pub>Penton Media, Inc., Penton Business Media, Inc. and their subsidiaries</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9114 |
ispartof | Machine design, 1997-04, Vol.69 (8), p.71-74 |
issn | 0024-9114 1944-9577 |
language | eng |
recordid | cdi_proquest_reports_217176845 |
source | EBSCOhost Business Source Complete |
subjects | Computer aided analysis Finite element analysis Finite element method Fits and tolerances Kinematics Mathematical models Measurement Statistical methods Stiffness matrix Stress Stress analysis Tolerance (Engineering) Yield stress |
title | Breaking down tolerance stack-up. (Brigham Young University's tolerance model) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20down%20tolerance%20stack-up.%20(Brigham%20Young%20University's%20tolerance%20model)&rft.jtitle=Machine%20design&rft.au=Merkley,%20Karl&rft.date=1997-04-17&rft.volume=69&rft.issue=8&rft.spage=71&rft.epage=74&rft.pages=71-74&rft.issn=0024-9114&rft.eissn=1944-9577&rft.coden=MADEAP&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA19498107%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217176845&rft_id=info:pmid/&rft_galeid=A19498107&rfr_iscdi=true |