Reliable efficiency
Thermally efficient aluminum windows are often designed in the form of a sandwich that places insulating material between the exterior and interior surfaces of frame and sash members. The insulating material interrupts the heat conduction pathway through the window, and is therefore known as a therm...
Gespeichert in:
Veröffentlicht in: | Buildings (Cedar Rapids. 1947) 1998-09, Vol.92 (9), p.28-28 |
---|---|
1. Verfasser: | |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 9 |
container_start_page | 28 |
container_title | Buildings (Cedar Rapids. 1947) |
container_volume | 92 |
creator | Sullivan, Stephen K |
description | Thermally efficient aluminum windows are often designed in the form of a sandwich that places insulating material between the exterior and interior surfaces of frame and sash members. The insulating material interrupts the heat conduction pathway through the window, and is therefore known as a thermal break. A common thermal break system, known as poured-and-debridged (PDB), involves the pouring of a liquid polyurethane formulation into a specially designed cavity built into the frame or sash extrusion. Once the material has properly cured, a section of aluminum forming the cavity is removed to form the thermal barrier. The American Architectural Manufacturers Association has thoroughly researched the long-term viability of polyurethane PDB thermal break systems and has developed a series of guidelines to prevent any such failures over the life of the window unit. |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_reports_210211302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34288627</sourcerecordid><originalsourceid>FETCH-LOGICAL-p582-dc554a1113b7ea1359f5bea42c51ee3c42442a06f6aa4b17e284440924e46aef3</originalsourceid><addsrcrecordid>eNpdzD1LxEAQgOFFPDCeVv4BrawWZmZns0kph19wIMj1YbI3C5H1ErN3hf_egFZWb_PwnpmKOKB1iHRuKgAI1gXyF-aylA8AxLaByty8ax6kz3qrKQ1x0EP8vjKrJLno9V_XZvf0uNu82O3b8-vmYWsn35DdR-9ZENH1QQWdb5PvVZiiR1UXmZhJoE61CPcYlBpmhpZYuRZNbm3ufrfTPH6dtBy7WadxPpaOEGj5Ai3m_p_5HErUnOWg46l0gR1jDYv8AX8qQYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>210211302</pqid></control><display><type>magazinearticle</type><title>Reliable efficiency</title><source>Business Source Complete</source><creator>Sullivan, Stephen K</creator><creatorcontrib>Sullivan, Stephen K</creatorcontrib><description>Thermally efficient aluminum windows are often designed in the form of a sandwich that places insulating material between the exterior and interior surfaces of frame and sash members. The insulating material interrupts the heat conduction pathway through the window, and is therefore known as a thermal break. A common thermal break system, known as poured-and-debridged (PDB), involves the pouring of a liquid polyurethane formulation into a specially designed cavity built into the frame or sash extrusion. Once the material has properly cured, a section of aluminum forming the cavity is removed to form the thermal barrier. The American Architectural Manufacturers Association has thoroughly researched the long-term viability of polyurethane PDB thermal break systems and has developed a series of guidelines to prevent any such failures over the life of the window unit.</description><identifier>ISSN: 0007-3725</identifier><identifier>EISSN: 2471-3112</identifier><language>eng</language><publisher>Nashville: Endeavor Business Media</publisher><subject>Aluminum ; Associations ; Design ; Facilities management ; Quality control ; Reliability ; Test methods ; Thermal cycling ; Thermodynamics ; Windows & doors</subject><ispartof>Buildings (Cedar Rapids. 1947), 1998-09, Vol.92 (9), p.28-28</ispartof><rights>Copyright Stamats Communications, Inc. Sep 1998</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sullivan, Stephen K</creatorcontrib><title>Reliable efficiency</title><title>Buildings (Cedar Rapids. 1947)</title><description>Thermally efficient aluminum windows are often designed in the form of a sandwich that places insulating material between the exterior and interior surfaces of frame and sash members. The insulating material interrupts the heat conduction pathway through the window, and is therefore known as a thermal break. A common thermal break system, known as poured-and-debridged (PDB), involves the pouring of a liquid polyurethane formulation into a specially designed cavity built into the frame or sash extrusion. Once the material has properly cured, a section of aluminum forming the cavity is removed to form the thermal barrier. The American Architectural Manufacturers Association has thoroughly researched the long-term viability of polyurethane PDB thermal break systems and has developed a series of guidelines to prevent any such failures over the life of the window unit.</description><subject>Aluminum</subject><subject>Associations</subject><subject>Design</subject><subject>Facilities management</subject><subject>Quality control</subject><subject>Reliability</subject><subject>Test methods</subject><subject>Thermal cycling</subject><subject>Thermodynamics</subject><subject>Windows & doors</subject><issn>0007-3725</issn><issn>2471-3112</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1998</creationdate><recordtype>magazinearticle</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdzD1LxEAQgOFFPDCeVv4BrawWZmZns0kph19wIMj1YbI3C5H1ErN3hf_egFZWb_PwnpmKOKB1iHRuKgAI1gXyF-aylA8AxLaByty8ax6kz3qrKQ1x0EP8vjKrJLno9V_XZvf0uNu82O3b8-vmYWsn35DdR-9ZENH1QQWdb5PvVZiiR1UXmZhJoE61CPcYlBpmhpZYuRZNbm3ufrfTPH6dtBy7WadxPpaOEGj5Ai3m_p_5HErUnOWg46l0gR1jDYv8AX8qQYE</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Sullivan, Stephen K</creator><general>Endeavor Business Media</general><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0F</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>19980901</creationdate><title>Reliable efficiency</title><author>Sullivan, Stephen K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p582-dc554a1113b7ea1359f5bea42c51ee3c42442a06f6aa4b17e284440924e46aef3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Aluminum</topic><topic>Associations</topic><topic>Design</topic><topic>Facilities management</topic><topic>Quality control</topic><topic>Reliability</topic><topic>Test methods</topic><topic>Thermal cycling</topic><topic>Thermodynamics</topic><topic>Windows & doors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sullivan, Stephen K</creatorcontrib><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Buildings (Cedar Rapids. 1947)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sullivan, Stephen K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable efficiency</atitle><jtitle>Buildings (Cedar Rapids. 1947)</jtitle><date>1998-09-01</date><risdate>1998</risdate><volume>92</volume><issue>9</issue><spage>28</spage><epage>28</epage><pages>28-28</pages><issn>0007-3725</issn><eissn>2471-3112</eissn><abstract>Thermally efficient aluminum windows are often designed in the form of a sandwich that places insulating material between the exterior and interior surfaces of frame and sash members. The insulating material interrupts the heat conduction pathway through the window, and is therefore known as a thermal break. A common thermal break system, known as poured-and-debridged (PDB), involves the pouring of a liquid polyurethane formulation into a specially designed cavity built into the frame or sash extrusion. Once the material has properly cured, a section of aluminum forming the cavity is removed to form the thermal barrier. The American Architectural Manufacturers Association has thoroughly researched the long-term viability of polyurethane PDB thermal break systems and has developed a series of guidelines to prevent any such failures over the life of the window unit.</abstract><cop>Nashville</cop><pub>Endeavor Business Media</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-3725 |
ispartof | Buildings (Cedar Rapids. 1947), 1998-09, Vol.92 (9), p.28-28 |
issn | 0007-3725 2471-3112 |
language | eng |
recordid | cdi_proquest_reports_210211302 |
source | Business Source Complete |
subjects | Aluminum Associations Design Facilities management Quality control Reliability Test methods Thermal cycling Thermodynamics Windows & doors |
title | Reliable efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20efficiency&rft.jtitle=Buildings%20(Cedar%20Rapids.%201947)&rft.au=Sullivan,%20Stephen%20K&rft.date=1998-09-01&rft.volume=92&rft.issue=9&rft.spage=28&rft.epage=28&rft.pages=28-28&rft.issn=0007-3725&rft.eissn=2471-3112&rft_id=info:doi/&rft_dat=%3Cproquest%3E34288627%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210211302&rft_id=info:pmid/&rfr_iscdi=true |