Microwave Drying for Safe Storage and Improved Nutritional Quality of Green Gram Seed (Vigna radiata)
The present study describes the effect of the microwave-heating method on disinfestations and physico characteristics, viz., grain size, grain hardness, and nutritional quality, of the stored green gram seed. It has been observed that the use of the microwave-heating method not only prolongs the sto...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2012-04, Vol.60 (14), p.3809-3816 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study describes the effect of the microwave-heating method on disinfestations and physico characteristics, viz., grain size, grain hardness, and nutritional quality, of the stored green gram seed. It has been observed that the use of the microwave-heating method not only prolongs the storage duration of the green gram seed but also enhances its nutritional quality. The effect of independent parameters, viz., microwave power level and time of exposure, on the moisture content, insect mortality, color, and antinutrient factor (phyic acid) was optimized using response surface methodology (RSM), with the optimized value for power of 808 W and time at 80 s. The optimally treated green gram seed has 8.9% moisture, 99.5% insect mortality, 2.22 Δa* (green color of seed), and 591.79 mg/100 g of antinutrient factor (phytic acid). The grain size (geometric mean diameter, D m) of the control (untreated) sample was 3.75 mm, and that of the microwave-treated sample using optimum conditions was 3.99 mm. The grain hardness of the control sample was 3.31 kg, and that of the microwave-treated sample using optimum conditions was 1.305 kg. In vitro protein digestibility (IVPD) of the control (untreated) sample was 83 ± 0.289%, and that of the microwave-treated sample using optimum conditions was 85 ± 0.296%. These values are significantly difference (p < 0.05). The mineral elements studied were Zn, Fe, Mg, Mn, Cu, K, Ca, and Na. The microwave treatment resulted in a non-significant (p < 0.05) effect for Mg, Mn, Cu, K, and Na but a significant (p < 0.05) effect for Zn, Ca, and Fe. The results indicate that the microwave heating not only increases the insect mortality but also reduces the moisture content and antinutritional factor (phytic acid), while the natural green color of the seed is not affected much. This study provides a novel and environmentally safe technique and increase in the nutritive quality. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf204540n |