A Nanostructured Electrochromic Supercapacitor
We report the first successful application of an ordered bicontinuous double-gyroid vanadium pentoxide network in an electrochromic supercapacitor. The freestanding vanadia network was fabricated by electrodeposition into a voided block copolymer template that had self-assembled into the double-gyro...
Gespeichert in:
Veröffentlicht in: | Nano letters 2012-04, Vol.12 (4), p.1857-1862 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the first successful application of an ordered bicontinuous double-gyroid vanadium pentoxide network in an electrochromic supercapacitor. The freestanding vanadia network was fabricated by electrodeposition into a voided block copolymer template that had self-assembled into the double-gyroid morphology. The highly ordered structure with 11.0 nm wide struts and a high specific surface to bulk volume ratio of 161.4 μm–1 is ideal for fast and efficient lithium ion intercalation/extraction and faradaic surface reactions, which are essential for high energy and high power density electrochemical energy storage devices. Supercapacitors made from such gyroid-structured vanadia electrodes exhibit a high specific capacitance of 155 F g–1 and show a strong electrochromic color change from green/gray to yellow, indicating the capacitor’s charge condition. The nanostructuring approach and utilizing an electrode material that has intrinsic electrochemical color-change properties are concepts that can be readily extended to other electrochromic intercalation compounds. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl2042112 |