Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions

We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2012-04, Vol.12 (4), p.1905-1911
Hauptverfasser: Yoon, Ilsun, Kim, Kanguk, Baker, Sarah E, Heineck, Daniel, Esener, Sadik C, Sirbuly, Donald J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1911
container_issue 4
container_start_page 1905
container_title Nano letters
container_volume 12
creator Yoon, Ilsun
Kim, Kanguk
Baker, Sarah E
Heineck, Daniel
Esener, Sadik C
Sirbuly, Donald J
description We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing thin self-assembled polyelectrolyte coatings at the fiber junctions. We demonstrate that the coupling efficiency is strongly dependent on the gap separation, showing strong fluctuations (0.1 dB/nm) in the power transfer when the separation between nanofibers changes by as little as 2 nm. Experimental results correlate well with numerical simulations using three-dimensional finite-difference time-domain techniques. To demonstrate the feasibility of using coupled nanofiber WGs to modulate light, we encased the junctions in an environment-responsive matrix and exposed the junctions to gaseous vapor. The nanofiber junctions show an ∼95% (or ∼80%) modulation of the guided 450 nm (or 510 nm) light upon interaction with the gaseous molecules. The results reveal a unique nanofiber-based sensing scheme that does not require a change in the refractive index to detect stimuli, suggesting these structures could play important roles in localized sensing devices including force-based measurements or novel chemically induced light modulators.
doi_str_mv 10.1021/nl2043024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_993910127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-cacdca98d739e41c1a719f7933f73f9b28001df2314066ac415c77a35148fd913</originalsourceid><addsrcrecordid>eNp90E1P3DAQBmCroip04cAfqHKp2h4CHtuJ42O16gfVAlIL4hjNOvauV4mdxvFW_fcEsSwXxGnm8OgdzUvIKdAzoAzOfcuo4JSJN-QICk7zUil2sN8rcUjex7ihlCpe0HfkkDEhFDB5RG7-jK5LbYr5bxP74KPbmmzhVusxm4fUt86vMvRNdhma1OLogs_-uXGdXaEP1i3NkN3h1qySa0z2K3n9IOIxeWuxjeZkN2fk9vu3m_nPfHH942L-dZEjl3LMNepGo6oayZURoAElKCsV51Zyq5asohQayzgIWpaoBRRaSuQFiMo2CviMfHrM7YfwN5k41p2L2rQtehNSrJXiCuj05yQ_vypBlowWrGJiol8eqR5CjIOxdT-4Dof_NdD6oe56X_dkP-xi07IzzV4-9TuBjzuAUWNrB_TaxWdXSFUWUD071LHehDT4qbcXDt4Dc-uSMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762052824</pqid></control><display><type>article</type><title>Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yoon, Ilsun ; Kim, Kanguk ; Baker, Sarah E ; Heineck, Daniel ; Esener, Sadik C ; Sirbuly, Donald J</creator><creatorcontrib>Yoon, Ilsun ; Kim, Kanguk ; Baker, Sarah E ; Heineck, Daniel ; Esener, Sadik C ; Sirbuly, Donald J</creatorcontrib><description>We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing thin self-assembled polyelectrolyte coatings at the fiber junctions. We demonstrate that the coupling efficiency is strongly dependent on the gap separation, showing strong fluctuations (0.1 dB/nm) in the power transfer when the separation between nanofibers changes by as little as 2 nm. Experimental results correlate well with numerical simulations using three-dimensional finite-difference time-domain techniques. To demonstrate the feasibility of using coupled nanofiber WGs to modulate light, we encased the junctions in an environment-responsive matrix and exposed the junctions to gaseous vapor. The nanofiber junctions show an ∼95% (or ∼80%) modulation of the guided 450 nm (or 510 nm) light upon interaction with the gaseous molecules. The results reveal a unique nanofiber-based sensing scheme that does not require a change in the refractive index to detect stimuli, suggesting these structures could play important roles in localized sensing devices including force-based measurements or novel chemically induced light modulators.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl2043024</identifier><identifier>PMID: 22449127</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalytic methods ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Dimethylpolysiloxanes - chemistry ; Exact sciences and technology ; Joining ; Light ; Materials science ; Mathematical analysis ; Mathematical models ; Methods of nanofabrication ; Modulation ; Nanocrystalline materials ; Nanofibers - chemistry ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Self-assembly ; Sensing devices ; Separation ; Silicon Dioxide - chemistry ; Three dimensional ; Tin Compounds - chemistry ; Waveguides</subject><ispartof>Nano letters, 2012-04, Vol.12 (4), p.1905-1911</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-cacdca98d739e41c1a719f7933f73f9b28001df2314066ac415c77a35148fd913</citedby><cites>FETCH-LOGICAL-a377t-cacdca98d739e41c1a719f7933f73f9b28001df2314066ac415c77a35148fd913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl2043024$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl2043024$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25796518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22449127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Ilsun</creatorcontrib><creatorcontrib>Kim, Kanguk</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Heineck, Daniel</creatorcontrib><creatorcontrib>Esener, Sadik C</creatorcontrib><creatorcontrib>Sirbuly, Donald J</creatorcontrib><title>Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing thin self-assembled polyelectrolyte coatings at the fiber junctions. We demonstrate that the coupling efficiency is strongly dependent on the gap separation, showing strong fluctuations (0.1 dB/nm) in the power transfer when the separation between nanofibers changes by as little as 2 nm. Experimental results correlate well with numerical simulations using three-dimensional finite-difference time-domain techniques. To demonstrate the feasibility of using coupled nanofiber WGs to modulate light, we encased the junctions in an environment-responsive matrix and exposed the junctions to gaseous vapor. The nanofiber junctions show an ∼95% (or ∼80%) modulation of the guided 450 nm (or 510 nm) light upon interaction with the gaseous molecules. The results reveal a unique nanofiber-based sensing scheme that does not require a change in the refractive index to detect stimuli, suggesting these structures could play important roles in localized sensing devices including force-based measurements or novel chemically induced light modulators.</description><subject>Catalytic methods</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Exact sciences and technology</subject><subject>Joining</subject><subject>Light</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods of nanofabrication</subject><subject>Modulation</subject><subject>Nanocrystalline materials</subject><subject>Nanofibers - chemistry</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Self-assembly</subject><subject>Sensing devices</subject><subject>Separation</subject><subject>Silicon Dioxide - chemistry</subject><subject>Three dimensional</subject><subject>Tin Compounds - chemistry</subject><subject>Waveguides</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1P3DAQBmCroip04cAfqHKp2h4CHtuJ42O16gfVAlIL4hjNOvauV4mdxvFW_fcEsSwXxGnm8OgdzUvIKdAzoAzOfcuo4JSJN-QICk7zUil2sN8rcUjex7ihlCpe0HfkkDEhFDB5RG7-jK5LbYr5bxP74KPbmmzhVusxm4fUt86vMvRNdhma1OLogs_-uXGdXaEP1i3NkN3h1qySa0z2K3n9IOIxeWuxjeZkN2fk9vu3m_nPfHH942L-dZEjl3LMNepGo6oayZURoAElKCsV51Zyq5asohQayzgIWpaoBRRaSuQFiMo2CviMfHrM7YfwN5k41p2L2rQtehNSrJXiCuj05yQ_vypBlowWrGJiol8eqR5CjIOxdT-4Dof_NdD6oe56X_dkP-xi07IzzV4-9TuBjzuAUWNrB_TaxWdXSFUWUD071LHehDT4qbcXDt4Dc-uSMA</recordid><startdate>20120411</startdate><enddate>20120411</enddate><creator>Yoon, Ilsun</creator><creator>Kim, Kanguk</creator><creator>Baker, Sarah E</creator><creator>Heineck, Daniel</creator><creator>Esener, Sadik C</creator><creator>Sirbuly, Donald J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120411</creationdate><title>Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions</title><author>Yoon, Ilsun ; Kim, Kanguk ; Baker, Sarah E ; Heineck, Daniel ; Esener, Sadik C ; Sirbuly, Donald J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-cacdca98d739e41c1a719f7933f73f9b28001df2314066ac415c77a35148fd913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Catalytic methods</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Exact sciences and technology</topic><topic>Joining</topic><topic>Light</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods of nanofabrication</topic><topic>Modulation</topic><topic>Nanocrystalline materials</topic><topic>Nanofibers - chemistry</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Self-assembly</topic><topic>Sensing devices</topic><topic>Separation</topic><topic>Silicon Dioxide - chemistry</topic><topic>Three dimensional</topic><topic>Tin Compounds - chemistry</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Ilsun</creatorcontrib><creatorcontrib>Kim, Kanguk</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Heineck, Daniel</creatorcontrib><creatorcontrib>Esener, Sadik C</creatorcontrib><creatorcontrib>Sirbuly, Donald J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Ilsun</au><au>Kim, Kanguk</au><au>Baker, Sarah E</au><au>Heineck, Daniel</au><au>Esener, Sadik C</au><au>Sirbuly, Donald J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-04-11</date><risdate>2012</risdate><volume>12</volume><issue>4</issue><spage>1905</spage><epage>1911</epage><pages>1905-1911</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing thin self-assembled polyelectrolyte coatings at the fiber junctions. We demonstrate that the coupling efficiency is strongly dependent on the gap separation, showing strong fluctuations (0.1 dB/nm) in the power transfer when the separation between nanofibers changes by as little as 2 nm. Experimental results correlate well with numerical simulations using three-dimensional finite-difference time-domain techniques. To demonstrate the feasibility of using coupled nanofiber WGs to modulate light, we encased the junctions in an environment-responsive matrix and exposed the junctions to gaseous vapor. The nanofiber junctions show an ∼95% (or ∼80%) modulation of the guided 450 nm (or 510 nm) light upon interaction with the gaseous molecules. The results reveal a unique nanofiber-based sensing scheme that does not require a change in the refractive index to detect stimuli, suggesting these structures could play important roles in localized sensing devices including force-based measurements or novel chemically induced light modulators.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22449127</pmid><doi>10.1021/nl2043024</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-04, Vol.12 (4), p.1905-1911
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_993910127
source MEDLINE; American Chemical Society Journals
subjects Catalytic methods
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Dimethylpolysiloxanes - chemistry
Exact sciences and technology
Joining
Light
Materials science
Mathematical analysis
Mathematical models
Methods of nanofabrication
Modulation
Nanocrystalline materials
Nanofibers - chemistry
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Physics
Self-assembly
Sensing devices
Separation
Silicon Dioxide - chemistry
Three dimensional
Tin Compounds - chemistry
Waveguides
title Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulus-Responsive%20Light%20Coupling%20and%20Modulation%20with%20Nanofiber%20Waveguide%20Junctions&rft.jtitle=Nano%20letters&rft.au=Yoon,%20Ilsun&rft.date=2012-04-11&rft.volume=12&rft.issue=4&rft.spage=1905&rft.epage=1911&rft.pages=1905-1911&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl2043024&rft_dat=%3Cproquest_cross%3E1762052824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762052824&rft_id=info:pmid/22449127&rfr_iscdi=true