Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions

We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2012-04, Vol.12 (4), p.1905-1911
Hauptverfasser: Yoon, Ilsun, Kim, Kanguk, Baker, Sarah E, Heineck, Daniel, Esener, Sadik C, Sirbuly, Donald J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing thin self-assembled polyelectrolyte coatings at the fiber junctions. We demonstrate that the coupling efficiency is strongly dependent on the gap separation, showing strong fluctuations (0.1 dB/nm) in the power transfer when the separation between nanofibers changes by as little as 2 nm. Experimental results correlate well with numerical simulations using three-dimensional finite-difference time-domain techniques. To demonstrate the feasibility of using coupled nanofiber WGs to modulate light, we encased the junctions in an environment-responsive matrix and exposed the junctions to gaseous vapor. The nanofiber junctions show an ∼95% (or ∼80%) modulation of the guided 450 nm (or 510 nm) light upon interaction with the gaseous molecules. The results reveal a unique nanofiber-based sensing scheme that does not require a change in the refractive index to detect stimuli, suggesting these structures could play important roles in localized sensing devices including force-based measurements or novel chemically induced light modulators.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl2043024