Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron

J. Neurochem. (2012) 121, 465–474. The axonal survival of motor neuron (a‐SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a‐SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a‐SMN in SMA is un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2012-05, Vol.121 (3), p.465-474
Hauptverfasser: Locatelli, Denise, d'Errico, Paolo, Capra, Silvia, Finardi, Adele, Colciaghi, Francesca, Setola, Veronica, Terao, Mineko, Garattini, Enrico, Battaglia, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 3
container_start_page 465
container_title Journal of neurochemistry
container_volume 121
creator Locatelli, Denise
d'Errico, Paolo
Capra, Silvia
Finardi, Adele
Colciaghi, Francesca
Setola, Veronica
Terao, Mineko
Garattini, Enrico
Battaglia, Giorgio
description J. Neurochem. (2012) 121, 465–474. The axonal survival of motor neuron (a‐SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a‐SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a‐SMN in SMA is unknown. As a first step to verify a link between a‐SMN and SMA, we investigated by means of over‐expression experiments in neuroblastoma‐spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N‐terminal part of the protein affected a‐SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re‐arrangements located in the Tudor domain consistently altered the a‐SMN capability of inducing axonal elongation in vitro. Mutated human a‐SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a‐SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL‐SMN but also for a‐SMN, raising the possibility that also a‐SMN loss of function may contribute to the pathogenic steps leading to SMA. Mutated ha‐SMN proteins impair axonogenesis 
Axonal‐SMN is a truncated isoform of SMN1, the disease gene for spinal muscular atrophy or SMA. We demonstrated here that SMA pathogenic mutations affect a‐SMN function in stimulating axon growth. Mutated a‐SMN proteins induce the growth of shorter axons with prominent morphologic abnormalities. Our data represent the first indication possibly linking a‐SMN loss of function to SMA pathogenesis.
doi_str_mv 10.1111/j.1471-4159.2012.07689.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_993318274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>993318274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6129-a116c1674db9789b44813f7f58c8d819c905bd4fbc936d8a96b53453e3e6e97e3</originalsourceid><addsrcrecordid>eNqNkcuO0zAYhS0EYjoDr4AiJMRsEnyLLwsWowIDqCpIBQ1iYzmuQ12SONjJ0L49zrQUiQXCG1s-3zn67QNAhmCB0nqxLRDlKKeolAWGCBeQMyGL3T0wOwn3wQxCjHMCKT4D5zFuIUSMMvQQnGFMMGUEz0C_6l2nm6wdoxkbHTI9BN9v9lmvh43_ZjtnkjbowfkuZq7ttQvZsLGZ3vnuqPfJYcPgbMx8fSfoJo9juHW3KTldtX7wIevsGHz3CDyodRPt4-N-AT6_ef1p_jZffLh-N79a5IYhLHONEDOIcbquJBeyolQgUvO6FEasBZJGwrJa07oykrC10JJVJaElscQyK7klF-D5ITdN92O0cVCti8Y2je6sH6OSkhAkMKeJvPwniSAUgpZY8IQ-_Qvd-jGk5055WGKafjhB4gCZ4GMMtlZ9cK0O-5SkpvrUVk0tqaklNdWn7upTu2R9cswfq9auT8bffSXg2RHQ0eimDrozLv7hSoERK6dBXx64n66x-_8eQL1fzqdT8ucHv4uD3Z38OnxXjBNeqpvltVotPi6_fH21UjfkF3pCxjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>992924016</pqid></control><display><type>article</type><title>Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Locatelli, Denise ; d'Errico, Paolo ; Capra, Silvia ; Finardi, Adele ; Colciaghi, Francesca ; Setola, Veronica ; Terao, Mineko ; Garattini, Enrico ; Battaglia, Giorgio</creator><creatorcontrib>Locatelli, Denise ; d'Errico, Paolo ; Capra, Silvia ; Finardi, Adele ; Colciaghi, Francesca ; Setola, Veronica ; Terao, Mineko ; Garattini, Enrico ; Battaglia, Giorgio</creatorcontrib><description>J. Neurochem. (2012) 121, 465–474. The axonal survival of motor neuron (a‐SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a‐SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a‐SMN in SMA is unknown. As a first step to verify a link between a‐SMN and SMA, we investigated by means of over‐expression experiments in neuroblastoma‐spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N‐terminal part of the protein affected a‐SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re‐arrangements located in the Tudor domain consistently altered the a‐SMN capability of inducing axonal elongation in vitro. Mutated human a‐SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a‐SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL‐SMN but also for a‐SMN, raising the possibility that also a‐SMN loss of function may contribute to the pathogenic steps leading to SMA. Mutated ha‐SMN proteins impair axonogenesis 
Axonal‐SMN is a truncated isoform of SMN1, the disease gene for spinal muscular atrophy or SMA. We demonstrated here that SMA pathogenic mutations affect a‐SMN function in stimulating axon growth. Mutated a‐SMN proteins induce the growth of shorter axons with prominent morphologic abnormalities. Our data represent the first indication possibly linking a‐SMN loss of function to SMA pathogenesis.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2012.07689.x</identifier><identifier>PMID: 22324632</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; axon growth ; axon swellings ; Axonogenesis ; Axons - physiology ; Axons - ultrastructure ; Biological and medical sciences ; Blotting, Western ; Cell Size ; Cell Survival ; Cells, Cultured ; cytoskeletal abnormalities ; Cytoskeleton - pathology ; Cytoskeleton - ultrastructure ; Data processing ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Diseases of striated muscles. Neuromuscular diseases ; Elongation ; Fluorescent Antibody Technique ; Hybrid Cells ; Hybrids ; Medical sciences ; Microscopy, Confocal ; Missense mutation ; Molecular Sequence Data ; motor neuron ; Motor neurons ; Motor Neurons - physiology ; Motor Neurons - ultrastructure ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - pathology ; Mutation ; Mutation - genetics ; Mutation - physiology ; Mutation, Missense - genetics ; Neurochemistry ; Neurology ; Neurons ; Overexpression ; Plasmids - genetics ; Proteins ; SMN protein ; Spinal cord ; spinal muscular atrophy ; Subcellular Fractions - pathology ; Subcellular Fractions - ultrastructure ; Survival of Motor Neuron 1 Protein - genetics ; Transfection ; Tudor domain</subject><ispartof>Journal of neurochemistry, 2012-05, Vol.121 (3), p.465-474</ispartof><rights>2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6129-a116c1674db9789b44813f7f58c8d819c905bd4fbc936d8a96b53453e3e6e97e3</citedby><cites>FETCH-LOGICAL-c6129-a116c1674db9789b44813f7f58c8d819c905bd4fbc936d8a96b53453e3e6e97e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2012.07689.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2012.07689.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25821657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22324632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Locatelli, Denise</creatorcontrib><creatorcontrib>d'Errico, Paolo</creatorcontrib><creatorcontrib>Capra, Silvia</creatorcontrib><creatorcontrib>Finardi, Adele</creatorcontrib><creatorcontrib>Colciaghi, Francesca</creatorcontrib><creatorcontrib>Setola, Veronica</creatorcontrib><creatorcontrib>Terao, Mineko</creatorcontrib><creatorcontrib>Garattini, Enrico</creatorcontrib><creatorcontrib>Battaglia, Giorgio</creatorcontrib><title>Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2012) 121, 465–474. The axonal survival of motor neuron (a‐SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a‐SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a‐SMN in SMA is unknown. As a first step to verify a link between a‐SMN and SMA, we investigated by means of over‐expression experiments in neuroblastoma‐spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N‐terminal part of the protein affected a‐SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re‐arrangements located in the Tudor domain consistently altered the a‐SMN capability of inducing axonal elongation in vitro. Mutated human a‐SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a‐SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL‐SMN but also for a‐SMN, raising the possibility that also a‐SMN loss of function may contribute to the pathogenic steps leading to SMA. Mutated ha‐SMN proteins impair axonogenesis 
Axonal‐SMN is a truncated isoform of SMN1, the disease gene for spinal muscular atrophy or SMA. We demonstrated here that SMA pathogenic mutations affect a‐SMN function in stimulating axon growth. Mutated a‐SMN proteins induce the growth of shorter axons with prominent morphologic abnormalities. Our data represent the first indication possibly linking a‐SMN loss of function to SMA pathogenesis.</description><subject>Amino Acid Sequence</subject><subject>axon growth</subject><subject>axon swellings</subject><subject>Axonogenesis</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cell Size</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>cytoskeletal abnormalities</subject><subject>Cytoskeleton - pathology</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Data processing</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>Elongation</subject><subject>Fluorescent Antibody Technique</subject><subject>Hybrid Cells</subject><subject>Hybrids</subject><subject>Medical sciences</subject><subject>Microscopy, Confocal</subject><subject>Missense mutation</subject><subject>Molecular Sequence Data</subject><subject>motor neuron</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor Neurons - ultrastructure</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Mutation - physiology</subject><subject>Mutation, Missense - genetics</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Overexpression</subject><subject>Plasmids - genetics</subject><subject>Proteins</subject><subject>SMN protein</subject><subject>Spinal cord</subject><subject>spinal muscular atrophy</subject><subject>Subcellular Fractions - pathology</subject><subject>Subcellular Fractions - ultrastructure</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Transfection</subject><subject>Tudor domain</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO0zAYhS0EYjoDr4AiJMRsEnyLLwsWowIDqCpIBQ1iYzmuQ12SONjJ0L49zrQUiQXCG1s-3zn67QNAhmCB0nqxLRDlKKeolAWGCBeQMyGL3T0wOwn3wQxCjHMCKT4D5zFuIUSMMvQQnGFMMGUEz0C_6l2nm6wdoxkbHTI9BN9v9lmvh43_ZjtnkjbowfkuZq7ttQvZsLGZ3vnuqPfJYcPgbMx8fSfoJo9juHW3KTldtX7wIevsGHz3CDyodRPt4-N-AT6_ef1p_jZffLh-N79a5IYhLHONEDOIcbquJBeyolQgUvO6FEasBZJGwrJa07oykrC10JJVJaElscQyK7klF-D5ITdN92O0cVCti8Y2je6sH6OSkhAkMKeJvPwniSAUgpZY8IQ-_Qvd-jGk5055WGKafjhB4gCZ4GMMtlZ9cK0O-5SkpvrUVk0tqaklNdWn7upTu2R9cswfq9auT8bffSXg2RHQ0eimDrozLv7hSoERK6dBXx64n66x-_8eQL1fzqdT8ucHv4uD3Z38OnxXjBNeqpvltVotPi6_fH21UjfkF3pCxjs</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Locatelli, Denise</creator><creator>d'Errico, Paolo</creator><creator>Capra, Silvia</creator><creator>Finardi, Adele</creator><creator>Colciaghi, Francesca</creator><creator>Setola, Veronica</creator><creator>Terao, Mineko</creator><creator>Garattini, Enrico</creator><creator>Battaglia, Giorgio</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201205</creationdate><title>Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron</title><author>Locatelli, Denise ; d'Errico, Paolo ; Capra, Silvia ; Finardi, Adele ; Colciaghi, Francesca ; Setola, Veronica ; Terao, Mineko ; Garattini, Enrico ; Battaglia, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6129-a116c1674db9789b44813f7f58c8d819c905bd4fbc936d8a96b53453e3e6e97e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>axon growth</topic><topic>axon swellings</topic><topic>Axonogenesis</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cell Size</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>cytoskeletal abnormalities</topic><topic>Cytoskeleton - pathology</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Data processing</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>Elongation</topic><topic>Fluorescent Antibody Technique</topic><topic>Hybrid Cells</topic><topic>Hybrids</topic><topic>Medical sciences</topic><topic>Microscopy, Confocal</topic><topic>Missense mutation</topic><topic>Molecular Sequence Data</topic><topic>motor neuron</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor Neurons - ultrastructure</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Mutation - physiology</topic><topic>Mutation, Missense - genetics</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Overexpression</topic><topic>Plasmids - genetics</topic><topic>Proteins</topic><topic>SMN protein</topic><topic>Spinal cord</topic><topic>spinal muscular atrophy</topic><topic>Subcellular Fractions - pathology</topic><topic>Subcellular Fractions - ultrastructure</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Transfection</topic><topic>Tudor domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Locatelli, Denise</creatorcontrib><creatorcontrib>d'Errico, Paolo</creatorcontrib><creatorcontrib>Capra, Silvia</creatorcontrib><creatorcontrib>Finardi, Adele</creatorcontrib><creatorcontrib>Colciaghi, Francesca</creatorcontrib><creatorcontrib>Setola, Veronica</creatorcontrib><creatorcontrib>Terao, Mineko</creatorcontrib><creatorcontrib>Garattini, Enrico</creatorcontrib><creatorcontrib>Battaglia, Giorgio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Locatelli, Denise</au><au>d'Errico, Paolo</au><au>Capra, Silvia</au><au>Finardi, Adele</au><au>Colciaghi, Francesca</au><au>Setola, Veronica</au><au>Terao, Mineko</au><au>Garattini, Enrico</au><au>Battaglia, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2012-05</date><risdate>2012</risdate><volume>121</volume><issue>3</issue><spage>465</spage><epage>474</epage><pages>465-474</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>J. Neurochem. (2012) 121, 465–474. The axonal survival of motor neuron (a‐SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a‐SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a‐SMN in SMA is unknown. As a first step to verify a link between a‐SMN and SMA, we investigated by means of over‐expression experiments in neuroblastoma‐spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N‐terminal part of the protein affected a‐SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re‐arrangements located in the Tudor domain consistently altered the a‐SMN capability of inducing axonal elongation in vitro. Mutated human a‐SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a‐SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL‐SMN but also for a‐SMN, raising the possibility that also a‐SMN loss of function may contribute to the pathogenic steps leading to SMA. Mutated ha‐SMN proteins impair axonogenesis 
Axonal‐SMN is a truncated isoform of SMN1, the disease gene for spinal muscular atrophy or SMA. We demonstrated here that SMA pathogenic mutations affect a‐SMN function in stimulating axon growth. Mutated a‐SMN proteins induce the growth of shorter axons with prominent morphologic abnormalities. Our data represent the first indication possibly linking a‐SMN loss of function to SMA pathogenesis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22324632</pmid><doi>10.1111/j.1471-4159.2012.07689.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2012-05, Vol.121 (3), p.465-474
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_993318274
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
axon growth
axon swellings
Axonogenesis
Axons - physiology
Axons - ultrastructure
Biological and medical sciences
Blotting, Western
Cell Size
Cell Survival
Cells, Cultured
cytoskeletal abnormalities
Cytoskeleton - pathology
Cytoskeleton - ultrastructure
Data processing
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Diseases of striated muscles. Neuromuscular diseases
Elongation
Fluorescent Antibody Technique
Hybrid Cells
Hybrids
Medical sciences
Microscopy, Confocal
Missense mutation
Molecular Sequence Data
motor neuron
Motor neurons
Motor Neurons - physiology
Motor Neurons - ultrastructure
Muscular Atrophy, Spinal - genetics
Muscular Atrophy, Spinal - pathology
Mutation
Mutation - genetics
Mutation - physiology
Mutation, Missense - genetics
Neurochemistry
Neurology
Neurons
Overexpression
Plasmids - genetics
Proteins
SMN protein
Spinal cord
spinal muscular atrophy
Subcellular Fractions - pathology
Subcellular Fractions - ultrastructure
Survival of Motor Neuron 1 Protein - genetics
Transfection
Tudor domain
title Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20muscular%20atrophy%20pathogenic%20mutations%20impair%20the%20axonogenic%20properties%20of%20axonal-survival%20of%20motor%20neuron&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Locatelli,%20Denise&rft.date=2012-05&rft.volume=121&rft.issue=3&rft.spage=465&rft.epage=474&rft.pages=465-474&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2012.07689.x&rft_dat=%3Cproquest_cross%3E993318274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=992924016&rft_id=info:pmid/22324632&rfr_iscdi=true