Computer simulation of linkage of two ring chains

We performed off-lattice Monte Carlo simulations of links of two model ring chains with chain length N up to 32 768 in the theta solution or amorphous bulk state by using a random walk model (Model I), and molecular dynamics simulations of two model ring chains in solution with excluded volume inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2012-04, Vol.136 (13), p.134902-134902-9
Hauptverfasser: Xiong, Zhimin, Han, Charles C., Liao, Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134902-9
container_issue 13
container_start_page 134902
container_title The Journal of chemical physics
container_volume 136
creator Xiong, Zhimin
Han, Charles C.
Liao, Qi
description We performed off-lattice Monte Carlo simulations of links of two model ring chains with chain length N up to 32 768 in the theta solution or amorphous bulk state by using a random walk model (Model I), and molecular dynamics simulations of two model ring chains in solution with excluded volume interaction (Model II) to investigate topological effects on the geometry of link and ring conformation. In the case of Model I, the mean squared linking number, its distribution, and the size of two chains with fixed linking number are investigated. Our simulation results confirm the previous theoretical prediction that the mean squared linking number decays as $pe^{ - qs^2 }$ p e − q s 2 with the distance of centers of chain mass s , where p and q are found to be chain length dependent and q asymptotically approaches to 0.75 as chain length increases. The linking number distribution of two chains has a universal form for long chains, but our simulation results clearly show that the distribution function deviates from the Gaussian distribution, a fact not predicted by any previous theoretical work. A scaling prediction is proposed to predict the link size, and is checked for our simulations for the Model II. The simulation results confirmed the scaling prediction of the blob picture that the link with linking number m occupies a compact volume of m blobs, and the size of the link is asymptotic to R L ≈ bN ν m 1/3 − ν , where N is the chain length, and v is the Flory exponent of polymer in solutions.
doi_str_mv 10.1063/1.3699980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_993102651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>993102651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-83729dc08f7186ab5f8e4fa2b92130116800f02c885ae435ca17325e262b0f8c3</originalsourceid><addsrcrecordid>eNp10L1OwzAUhmELgWgpDNwAyoYYAufYsWMPDKjiT6rEArPluHYxJHGJEyHunpa2MDGdM7z6hoeQU4RLBMGu8JIJpZSEPTJGkCovhYJ9MgagmCsBYkSOUnoDACxpcUhGlBaScsnHBKexWQ6967IUmqE2fYhtFn1Wh_bdLNz67T9j1oV2kdlXE9p0TA68qZM72d4Jebm7fZ4-5LOn-8fpzSy3jMk-l6ykam5B-hKlMBX30hXe0EpRZIAoJIAHaqXkxhWMW4Mlo9xRQSvw0rIJOd_sLrv4MbjU6yYk6-ratC4OSSvFEKjguCovNqXtYkqd83rZhcZ0XxpBr4E06i3Qqj3brg5V4-a_5U5kFVxvgmRD_8Px_9rOTv_ZsW_ayXM2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993102651</pqid></control><display><type>article</type><title>Computer simulation of linkage of two ring chains</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Xiong, Zhimin ; Han, Charles C. ; Liao, Qi</creator><creatorcontrib>Xiong, Zhimin ; Han, Charles C. ; Liao, Qi</creatorcontrib><description>We performed off-lattice Monte Carlo simulations of links of two model ring chains with chain length N up to 32 768 in the theta solution or amorphous bulk state by using a random walk model (Model I), and molecular dynamics simulations of two model ring chains in solution with excluded volume interaction (Model II) to investigate topological effects on the geometry of link and ring conformation. In the case of Model I, the mean squared linking number, its distribution, and the size of two chains with fixed linking number are investigated. Our simulation results confirm the previous theoretical prediction that the mean squared linking number decays as $pe^{ - qs^2 }$ p e − q s 2 with the distance of centers of chain mass s , where p and q are found to be chain length dependent and q asymptotically approaches to 0.75 as chain length increases. The linking number distribution of two chains has a universal form for long chains, but our simulation results clearly show that the distribution function deviates from the Gaussian distribution, a fact not predicted by any previous theoretical work. A scaling prediction is proposed to predict the link size, and is checked for our simulations for the Model II. The simulation results confirmed the scaling prediction of the blob picture that the link with linking number m occupies a compact volume of m blobs, and the size of the link is asymptotic to R L ≈ bN ν m 1/3 − ν , where N is the chain length, and v is the Flory exponent of polymer in solutions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3699980</identifier><identifier>PMID: 22482585</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2012-04, Vol.136 (13), p.134902-134902-9</ispartof><rights>2012 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-83729dc08f7186ab5f8e4fa2b92130116800f02c885ae435ca17325e262b0f8c3</citedby><cites>FETCH-LOGICAL-c338t-83729dc08f7186ab5f8e4fa2b92130116800f02c885ae435ca17325e262b0f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22482585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Zhimin</creatorcontrib><creatorcontrib>Han, Charles C.</creatorcontrib><creatorcontrib>Liao, Qi</creatorcontrib><title>Computer simulation of linkage of two ring chains</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We performed off-lattice Monte Carlo simulations of links of two model ring chains with chain length N up to 32 768 in the theta solution or amorphous bulk state by using a random walk model (Model I), and molecular dynamics simulations of two model ring chains in solution with excluded volume interaction (Model II) to investigate topological effects on the geometry of link and ring conformation. In the case of Model I, the mean squared linking number, its distribution, and the size of two chains with fixed linking number are investigated. Our simulation results confirm the previous theoretical prediction that the mean squared linking number decays as $pe^{ - qs^2 }$ p e − q s 2 with the distance of centers of chain mass s , where p and q are found to be chain length dependent and q asymptotically approaches to 0.75 as chain length increases. The linking number distribution of two chains has a universal form for long chains, but our simulation results clearly show that the distribution function deviates from the Gaussian distribution, a fact not predicted by any previous theoretical work. A scaling prediction is proposed to predict the link size, and is checked for our simulations for the Model II. The simulation results confirmed the scaling prediction of the blob picture that the link with linking number m occupies a compact volume of m blobs, and the size of the link is asymptotic to R L ≈ bN ν m 1/3 − ν , where N is the chain length, and v is the Flory exponent of polymer in solutions.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUhmELgWgpDNwAyoYYAufYsWMPDKjiT6rEArPluHYxJHGJEyHunpa2MDGdM7z6hoeQU4RLBMGu8JIJpZSEPTJGkCovhYJ9MgagmCsBYkSOUnoDACxpcUhGlBaScsnHBKexWQ6967IUmqE2fYhtFn1Wh_bdLNz67T9j1oV2kdlXE9p0TA68qZM72d4Jebm7fZ4-5LOn-8fpzSy3jMk-l6ykam5B-hKlMBX30hXe0EpRZIAoJIAHaqXkxhWMW4Mlo9xRQSvw0rIJOd_sLrv4MbjU6yYk6-ratC4OSSvFEKjguCovNqXtYkqd83rZhcZ0XxpBr4E06i3Qqj3brg5V4-a_5U5kFVxvgmRD_8Px_9rOTv_ZsW_ayXM2</recordid><startdate>20120407</startdate><enddate>20120407</enddate><creator>Xiong, Zhimin</creator><creator>Han, Charles C.</creator><creator>Liao, Qi</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120407</creationdate><title>Computer simulation of linkage of two ring chains</title><author>Xiong, Zhimin ; Han, Charles C. ; Liao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-83729dc08f7186ab5f8e4fa2b92130116800f02c885ae435ca17325e262b0f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Zhimin</creatorcontrib><creatorcontrib>Han, Charles C.</creatorcontrib><creatorcontrib>Liao, Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Zhimin</au><au>Han, Charles C.</au><au>Liao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of linkage of two ring chains</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2012-04-07</date><risdate>2012</risdate><volume>136</volume><issue>13</issue><spage>134902</spage><epage>134902-9</epage><pages>134902-134902-9</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We performed off-lattice Monte Carlo simulations of links of two model ring chains with chain length N up to 32 768 in the theta solution or amorphous bulk state by using a random walk model (Model I), and molecular dynamics simulations of two model ring chains in solution with excluded volume interaction (Model II) to investigate topological effects on the geometry of link and ring conformation. In the case of Model I, the mean squared linking number, its distribution, and the size of two chains with fixed linking number are investigated. Our simulation results confirm the previous theoretical prediction that the mean squared linking number decays as $pe^{ - qs^2 }$ p e − q s 2 with the distance of centers of chain mass s , where p and q are found to be chain length dependent and q asymptotically approaches to 0.75 as chain length increases. The linking number distribution of two chains has a universal form for long chains, but our simulation results clearly show that the distribution function deviates from the Gaussian distribution, a fact not predicted by any previous theoretical work. A scaling prediction is proposed to predict the link size, and is checked for our simulations for the Model II. The simulation results confirmed the scaling prediction of the blob picture that the link with linking number m occupies a compact volume of m blobs, and the size of the link is asymptotic to R L ≈ bN ν m 1/3 − ν , where N is the chain length, and v is the Flory exponent of polymer in solutions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22482585</pmid><doi>10.1063/1.3699980</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2012-04, Vol.136 (13), p.134902-134902-9
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_993102651
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Computer simulation of linkage of two ring chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20linkage%20of%20two%20ring%20chains&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Xiong,%20Zhimin&rft.date=2012-04-07&rft.volume=136&rft.issue=13&rft.spage=134902&rft.epage=134902-9&rft.pages=134902-134902-9&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3699980&rft_dat=%3Cproquest_cross%3E993102651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993102651&rft_id=info:pmid/22482585&rfr_iscdi=true