Spectral Hounsfield units: a new radiological concept
Objective Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of d...
Gespeichert in:
Veröffentlicht in: | European radiology 2012-05, Vol.22 (5), p.1008-1013 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1013 |
---|---|
container_issue | 5 |
container_start_page | 1008 |
container_title | European radiology |
container_volume | 22 |
creator | Hurrell, Michael Anthony Butler, Anthony Philip Howard Cook, Nicholas James Butler, Philip Howard Ronaldson, J. Paul Zainon, Rafidah |
description | Objective
Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon.
Methods
This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage.
Results
While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density.
Conclusion
Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU
keV
.
Key Points
•
Spectral computed tomography uses K-edge and slope effects to identify element signatures
.
•
New visualisation tools will be required to efficiently display spectral CT information
.
•
This paper demonstrates HU variation with keV using the Medipix3 chip
.
•
HU
keV
is a suggested format when stating spectral HU measurements
. |
doi_str_mv | 10.1007/s00330-011-2348-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_993100695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>993100695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c4a7ff65847fc203d15a1da6efa02753557932b39cc0256a80fb9b27323a02d43</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMo7rr6AF6kePFUnWTSpvEmi7rCggf1HNI0Xbp0mzVpEd_eLF0VBE9zmO__Z_gIOadwTQHETQBAhBQoTRnyIsUDMqUcWUqh4IdkChKLVEjJJ-QkhDUASMrFMZkwRiMv-ZRkL1treq_bZOGGLtSNbatk6Jo-3CY66exH4nXVuNatGhMh4zpjt_0pOap1G-zZfs7I28P963yRLp8fn-Z3y9SggD41XIu6zrOCi9owwIpmmlY6t7UGJjLMMiGRlSiNAZbluoC6lCUTyDACFccZuRp7t969Dzb0atMEY9tWd9YNQUmJUUQus0he_iHXbvBdfE5JQakEpCxCdISMdyF4W6utbzbafyoKamdUjUZVNKp2RhXGzMW-eCg3tvpJfCuMABuBEFfdyvrfy_-3fgFjiH51</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>971190312</pqid></control><display><type>article</type><title>Spectral Hounsfield units: a new radiological concept</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hurrell, Michael Anthony ; Butler, Anthony Philip Howard ; Cook, Nicholas James ; Butler, Philip Howard ; Ronaldson, J. Paul ; Zainon, Rafidah</creator><creatorcontrib>Hurrell, Michael Anthony ; Butler, Anthony Philip Howard ; Cook, Nicholas James ; Butler, Philip Howard ; Ronaldson, J. Paul ; Zainon, Rafidah</creatorcontrib><description>Objective
Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon.
Methods
This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage.
Results
While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density.
Conclusion
Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU
keV
.
Key Points
•
Spectral computed tomography uses K-edge and slope effects to identify element signatures
.
•
New visualisation tools will be required to efficiently display spectral CT information
.
•
This paper demonstrates HU variation with keV using the Medipix3 chip
.
•
HU
keV
is a suggested format when stating spectral HU measurements
.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-011-2348-3</identifier><identifier>PMID: 22134894</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computed Tomography ; Diagnostic Radiology ; Energy ; Equipment Design ; Equipment Failure Analysis ; Humans ; Imaging ; Internal Medicine ; Interventional Radiology ; Mars ; Medicine ; Medicine & Public Health ; Neuroradiology ; Phantoms, Imaging ; Radiation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiology ; Reproducibility of Results ; Sensitivity and Specificity ; Sensors ; Tomography ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods ; Ultrasound</subject><ispartof>European radiology, 2012-05, Vol.22 (5), p.1008-1013</ispartof><rights>European Society of Radiology 2011</rights><rights>European Society of Radiology 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c4a7ff65847fc203d15a1da6efa02753557932b39cc0256a80fb9b27323a02d43</citedby><cites>FETCH-LOGICAL-c370t-c4a7ff65847fc203d15a1da6efa02753557932b39cc0256a80fb9b27323a02d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-011-2348-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-011-2348-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22134894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurrell, Michael Anthony</creatorcontrib><creatorcontrib>Butler, Anthony Philip Howard</creatorcontrib><creatorcontrib>Cook, Nicholas James</creatorcontrib><creatorcontrib>Butler, Philip Howard</creatorcontrib><creatorcontrib>Ronaldson, J. Paul</creatorcontrib><creatorcontrib>Zainon, Rafidah</creatorcontrib><title>Spectral Hounsfield units: a new radiological concept</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objective
Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon.
Methods
This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage.
Results
While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density.
Conclusion
Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU
keV
.
Key Points
•
Spectral computed tomography uses K-edge and slope effects to identify element signatures
.
•
New visualisation tools will be required to efficiently display spectral CT information
.
•
This paper demonstrates HU variation with keV using the Medipix3 chip
.
•
HU
keV
is a suggested format when stating spectral HU measurements
.</description><subject>Computed Tomography</subject><subject>Diagnostic Radiology</subject><subject>Energy</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Mars</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neuroradiology</subject><subject>Phantoms, Imaging</subject><subject>Radiation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKxDAQhoMo7rr6AF6kePFUnWTSpvEmi7rCggf1HNI0Xbp0mzVpEd_eLF0VBE9zmO__Z_gIOadwTQHETQBAhBQoTRnyIsUDMqUcWUqh4IdkChKLVEjJJ-QkhDUASMrFMZkwRiMv-ZRkL1treq_bZOGGLtSNbatk6Jo-3CY66exH4nXVuNatGhMh4zpjt_0pOap1G-zZfs7I28P963yRLp8fn-Z3y9SggD41XIu6zrOCi9owwIpmmlY6t7UGJjLMMiGRlSiNAZbluoC6lCUTyDACFccZuRp7t969Dzb0atMEY9tWd9YNQUmJUUQus0he_iHXbvBdfE5JQakEpCxCdISMdyF4W6utbzbafyoKamdUjUZVNKp2RhXGzMW-eCg3tvpJfCuMABuBEFfdyvrfy_-3fgFjiH51</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Hurrell, Michael Anthony</creator><creator>Butler, Anthony Philip Howard</creator><creator>Cook, Nicholas James</creator><creator>Butler, Philip Howard</creator><creator>Ronaldson, J. Paul</creator><creator>Zainon, Rafidah</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Spectral Hounsfield units: a new radiological concept</title><author>Hurrell, Michael Anthony ; Butler, Anthony Philip Howard ; Cook, Nicholas James ; Butler, Philip Howard ; Ronaldson, J. Paul ; Zainon, Rafidah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c4a7ff65847fc203d15a1da6efa02753557932b39cc0256a80fb9b27323a02d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computed Tomography</topic><topic>Diagnostic Radiology</topic><topic>Energy</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Mars</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neuroradiology</topic><topic>Phantoms, Imaging</topic><topic>Radiation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurrell, Michael Anthony</creatorcontrib><creatorcontrib>Butler, Anthony Philip Howard</creatorcontrib><creatorcontrib>Cook, Nicholas James</creatorcontrib><creatorcontrib>Butler, Philip Howard</creatorcontrib><creatorcontrib>Ronaldson, J. Paul</creatorcontrib><creatorcontrib>Zainon, Rafidah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurrell, Michael Anthony</au><au>Butler, Anthony Philip Howard</au><au>Cook, Nicholas James</au><au>Butler, Philip Howard</au><au>Ronaldson, J. Paul</au><au>Zainon, Rafidah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Hounsfield units: a new radiological concept</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>22</volume><issue>5</issue><spage>1008</spage><epage>1013</epage><pages>1008-1013</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objective
Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon.
Methods
This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage.
Results
While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density.
Conclusion
Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU
keV
.
Key Points
•
Spectral computed tomography uses K-edge and slope effects to identify element signatures
.
•
New visualisation tools will be required to efficiently display spectral CT information
.
•
This paper demonstrates HU variation with keV using the Medipix3 chip
.
•
HU
keV
is a suggested format when stating spectral HU measurements
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22134894</pmid><doi>10.1007/s00330-011-2348-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-7994 |
ispartof | European radiology, 2012-05, Vol.22 (5), p.1008-1013 |
issn | 0938-7994 1432-1084 |
language | eng |
recordid | cdi_proquest_miscellaneous_993100695 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Computed Tomography Diagnostic Radiology Energy Equipment Design Equipment Failure Analysis Humans Imaging Internal Medicine Interventional Radiology Mars Medicine Medicine & Public Health Neuroradiology Phantoms, Imaging Radiation Radiographic Image Interpretation, Computer-Assisted - methods Radiology Reproducibility of Results Sensitivity and Specificity Sensors Tomography Tomography, X-Ray Computed - instrumentation Tomography, X-Ray Computed - methods Ultrasound |
title | Spectral Hounsfield units: a new radiological concept |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Hounsfield%20units:%20a%20new%20radiological%20concept&rft.jtitle=European%20radiology&rft.au=Hurrell,%20Michael%20Anthony&rft.date=2012-05-01&rft.volume=22&rft.issue=5&rft.spage=1008&rft.epage=1013&rft.pages=1008-1013&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-011-2348-3&rft_dat=%3Cproquest_cross%3E993100695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=971190312&rft_id=info:pmid/22134894&rfr_iscdi=true |