Inland marine fish culture in low salinity recirculating aquaculture systems

Expansion of marine aquaculture is challenged by the high cost and limited availability of coastal land and water resources, effluent concerns, high production costs, restricted growing seasons, lack of quality fingerlings, and inadequate regulatory and permitting processes. Many of these constraint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of Fisheries Research Agency (Japan) 2012-01 (35), p.65-75
Hauptverfasser: Riche, Marty-A, Pfeiffer, Timothy-J, Wills, Paul-S, Amberg, Jon-J, Sepulveda, Maria-S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 35
container_start_page 65
container_title Bulletin of Fisheries Research Agency (Japan)
container_volume
creator Riche, Marty-A
Pfeiffer, Timothy-J
Wills, Paul-S
Amberg, Jon-J
Sepulveda, Maria-S
description Expansion of marine aquaculture is challenged by the high cost and limited availability of coastal land and water resources, effluent concerns, high production costs, restricted growing seasons, lack of quality fingerlings, and inadequate regulatory and permitting processes. Many of these constraints can be addressed with inland marine fish culture in low salinity recirculating systems as production models. We describe recent and ongoing development of technologies in four principal areas: 1) engineering and system design; 2) year-round fingerling production; 3) diet development; and 4) physiological adaptation of marine fish to low salinity environments using genomic approaches. It is anticipated these technologies could find application for rearing euryhaline marine fish throughout approximately 2/3 of the U.S. where low salinity groundwater is available. This approach will reduce the need to be located near the coast, reduce the volume of saltwater effluent, and reduce the carbon footprint of marine finfish production.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_968183998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968183998</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_9681839983</originalsourceid><addsrcrecordid>eNqNjbEKwjAUADMoWLT_8DanQmtKTGZRFBzdJdZXfZCmNi9B-vd20N3phju4mcgqWavCaFMvRM5Mt3Kj1LaSpcnE-eSd9XfobCCP0BI_oUkupoBAHlz_BraOPMURAjYUJmkj-QfYIdlfySNH7Hgl5q11jPmXS7E-7C-7Y_EK_ZCQ47UjbtBNR-wTX43SlZbGaPl_-QEs1UKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>968183998</pqid></control><display><type>article</type><title>Inland marine fish culture in low salinity recirculating aquaculture systems</title><source>Open Access Titles of Japan</source><source>AgriKnowledge(アグリナレッジ)AGROLib</source><creator>Riche, Marty-A ; Pfeiffer, Timothy-J ; Wills, Paul-S ; Amberg, Jon-J ; Sepulveda, Maria-S</creator><creatorcontrib>Riche, Marty-A ; Pfeiffer, Timothy-J ; Wills, Paul-S ; Amberg, Jon-J ; Sepulveda, Maria-S</creatorcontrib><description>Expansion of marine aquaculture is challenged by the high cost and limited availability of coastal land and water resources, effluent concerns, high production costs, restricted growing seasons, lack of quality fingerlings, and inadequate regulatory and permitting processes. Many of these constraints can be addressed with inland marine fish culture in low salinity recirculating systems as production models. We describe recent and ongoing development of technologies in four principal areas: 1) engineering and system design; 2) year-round fingerling production; 3) diet development; and 4) physiological adaptation of marine fish to low salinity environments using genomic approaches. It is anticipated these technologies could find application for rearing euryhaline marine fish throughout approximately 2/3 of the U.S. where low salinity groundwater is available. This approach will reduce the need to be located near the coast, reduce the volume of saltwater effluent, and reduce the carbon footprint of marine finfish production.</description><identifier>ISSN: 1346-9894</identifier><language>eng</language><subject>Marine</subject><ispartof>Bulletin of Fisheries Research Agency (Japan), 2012-01 (35), p.65-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Riche, Marty-A</creatorcontrib><creatorcontrib>Pfeiffer, Timothy-J</creatorcontrib><creatorcontrib>Wills, Paul-S</creatorcontrib><creatorcontrib>Amberg, Jon-J</creatorcontrib><creatorcontrib>Sepulveda, Maria-S</creatorcontrib><title>Inland marine fish culture in low salinity recirculating aquaculture systems</title><title>Bulletin of Fisheries Research Agency (Japan)</title><description>Expansion of marine aquaculture is challenged by the high cost and limited availability of coastal land and water resources, effluent concerns, high production costs, restricted growing seasons, lack of quality fingerlings, and inadequate regulatory and permitting processes. Many of these constraints can be addressed with inland marine fish culture in low salinity recirculating systems as production models. We describe recent and ongoing development of technologies in four principal areas: 1) engineering and system design; 2) year-round fingerling production; 3) diet development; and 4) physiological adaptation of marine fish to low salinity environments using genomic approaches. It is anticipated these technologies could find application for rearing euryhaline marine fish throughout approximately 2/3 of the U.S. where low salinity groundwater is available. This approach will reduce the need to be located near the coast, reduce the volume of saltwater effluent, and reduce the carbon footprint of marine finfish production.</description><subject>Marine</subject><issn>1346-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNjbEKwjAUADMoWLT_8DanQmtKTGZRFBzdJdZXfZCmNi9B-vd20N3phju4mcgqWavCaFMvRM5Mt3Kj1LaSpcnE-eSd9XfobCCP0BI_oUkupoBAHlz_BraOPMURAjYUJmkj-QfYIdlfySNH7Hgl5q11jPmXS7E-7C-7Y_EK_ZCQ47UjbtBNR-wTX43SlZbGaPl_-QEs1UKv</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Riche, Marty-A</creator><creator>Pfeiffer, Timothy-J</creator><creator>Wills, Paul-S</creator><creator>Amberg, Jon-J</creator><creator>Sepulveda, Maria-S</creator><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20120101</creationdate><title>Inland marine fish culture in low salinity recirculating aquaculture systems</title><author>Riche, Marty-A ; Pfeiffer, Timothy-J ; Wills, Paul-S ; Amberg, Jon-J ; Sepulveda, Maria-S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_9681839983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Marine</topic><toplevel>online_resources</toplevel><creatorcontrib>Riche, Marty-A</creatorcontrib><creatorcontrib>Pfeiffer, Timothy-J</creatorcontrib><creatorcontrib>Wills, Paul-S</creatorcontrib><creatorcontrib>Amberg, Jon-J</creatorcontrib><creatorcontrib>Sepulveda, Maria-S</creatorcontrib><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bulletin of Fisheries Research Agency (Japan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riche, Marty-A</au><au>Pfeiffer, Timothy-J</au><au>Wills, Paul-S</au><au>Amberg, Jon-J</au><au>Sepulveda, Maria-S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inland marine fish culture in low salinity recirculating aquaculture systems</atitle><jtitle>Bulletin of Fisheries Research Agency (Japan)</jtitle><date>2012-01-01</date><risdate>2012</risdate><issue>35</issue><spage>65</spage><epage>75</epage><pages>65-75</pages><issn>1346-9894</issn><abstract>Expansion of marine aquaculture is challenged by the high cost and limited availability of coastal land and water resources, effluent concerns, high production costs, restricted growing seasons, lack of quality fingerlings, and inadequate regulatory and permitting processes. Many of these constraints can be addressed with inland marine fish culture in low salinity recirculating systems as production models. We describe recent and ongoing development of technologies in four principal areas: 1) engineering and system design; 2) year-round fingerling production; 3) diet development; and 4) physiological adaptation of marine fish to low salinity environments using genomic approaches. It is anticipated these technologies could find application for rearing euryhaline marine fish throughout approximately 2/3 of the U.S. where low salinity groundwater is available. This approach will reduce the need to be located near the coast, reduce the volume of saltwater effluent, and reduce the carbon footprint of marine finfish production.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1346-9894
ispartof Bulletin of Fisheries Research Agency (Japan), 2012-01 (35), p.65-75
issn 1346-9894
language eng
recordid cdi_proquest_miscellaneous_968183998
source Open Access Titles of Japan; AgriKnowledge(アグリナレッジ)AGROLib
subjects Marine
title Inland marine fish culture in low salinity recirculating aquaculture systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inland%20marine%20fish%20culture%20in%20low%20salinity%20recirculating%20aquaculture%20systems&rft.jtitle=Bulletin%20of%20Fisheries%20Research%20Agency%20(Japan)&rft.au=Riche,%20Marty-A&rft.date=2012-01-01&rft.issue=35&rft.spage=65&rft.epage=75&rft.pages=65-75&rft.issn=1346-9894&rft_id=info:doi/&rft_dat=%3Cproquest%3E968183998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=968183998&rft_id=info:pmid/&rfr_iscdi=true