Milk microbiome signatures of subclinical mastitis‐affected cattle analysed by shotgun sequencing

Aims: Metagenomic analysis of milk samples collected from Kankrej, Gir (Bos indicus) and crossbred (Bos taurus × B. indicus) cattle harbouring subclinical mastitis was carried out by next‐generation sequencing 454 GS‐FLX technology to elucidate the microbial community structure of cattle milk. Metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2012-04, Vol.112 (4), p.639-650
Hauptverfasser: Bhatt, V.D, Ahir, V.B, Koringa, P.G, Jakhesara, S.J, Rank, D.N, Nauriyal, D.S, Kunjadia, A.P, Joshi, C.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 4
container_start_page 639
container_title Journal of applied microbiology
container_volume 112
creator Bhatt, V.D
Ahir, V.B
Koringa, P.G
Jakhesara, S.J
Rank, D.N
Nauriyal, D.S
Kunjadia, A.P
Joshi, C.G
description Aims: Metagenomic analysis of milk samples collected from Kankrej, Gir (Bos indicus) and crossbred (Bos taurus × B. indicus) cattle harbouring subclinical mastitis was carried out by next‐generation sequencing 454 GS‐FLX technology to elucidate the microbial community structure of cattle milk. Methods and Results: Milk samples from Kankrej, Gir and crossbred cattle were subjected to metagenomic profiling by pyrosequencing. The Metagenomic analysis produced 63·07, 11·09 and 7·87 million base pairs (Mb) of sequence data, assembled in 264 798, 56 114 and 36 762 sequences with an average read length of 238, 197 and 214 nucleotides in Kankrej, Gir and crossbred cattle, respectively. Phylogenetic and metabolic profiles by the web‐based tool MG‐RAST revealed that the members of Enterobacteriales were predominant in mastitic milk followed by Pseudomonadales, Bacillales and Lactobacillales. Around 56 different species with varying abundance were detected in the subclinically infected milk. Escherichia coli was found to be the most predominant species in Kankrej and Gir cattle followed by Pseudomonas aeruginosa, Pseudomonas mendocina, Shigella flexneri and Bacillus cereus. In crossbred cattle, Staphylococcus aureus followed by Klebsiella pneumoniae, Staphylococcus epidermidis and E. coli were detected in descending order. Metabolic profiling indicated fluoroquinolones, methicillin, copper, cobalt–zinc–cadmium as the groups of antibiotics and toxic compounds to which the organisms showed resistance. Sequences indicating potential of organisms exhibiting multidrug resistance against antibiotics and resistance to toxic compounds were also present. Interestingly, presence of bacteriophages against Staph. aureus, E. coli, Enterobacter and Yersinia species was also observed. Conclusions: The analysis identified potential infectious organisms in mastitis, resistance of organisms to antibiotics and chemical compounds and the natural resistance potential of dairy cows. Significance and Impact of the Study: The findings of this study may help in formulating strategies for the prevention and treatment of mastitis in dairy animals and consequently in reducing economic losses incurred because of it.
doi_str_mv 10.1111/j.1365-2672.2012.05244.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_968180775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968180775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5494-47200f8a92950ce5ca90f478b8b7cc46c7fe458cf668fe91f464b6c82f37d7093</originalsourceid><addsrcrecordid>eNpFkc1yFCEUhSlLy8SYV1A2lqtugeavFy5iyowmGbNIUrqjaAZGJnR3bOhyZucj-Ix5ktCZcWTDpe53LhwOABCjEuf1YVXiirOCcEFKgjApESOUlutn4HDfeP5U04IhQQ7AqxhXCOEKMf4SHBBChEBCHAIz9-EOtt4MfeP71sLol51O42Aj7B2MY2OC77zRAbY6Jp98fPjzVztnTbILaHRKwULd6bCJ-dxsYPzZp-XYwWh_jbYzvlu-Bi-cDtEe7_YjcHv2-eb0S3F5Nft6enJZGEZrWlBBEHJS16RmyFhmdI0cFbKRjTCGciOcpUwax7l0tsaOctpwI4mrxEKgujoC77dz74c-3x2Tan00NgTd2X6MquYSy-yaZfLNjhyb1i7U_eBbPWzUv3_JwLsdoGP27gadncT_HONYcMkz93HL_fbBbvZ9jNSUk1qpKQ41xaGmnNRTTmqtzk_mU5X1xVbvY7LrvV4Pd4qLSjD1_dtMXfw4m0mEP6l55t9uead7pZdDftPtdZ5Mp2yFrGn1CEDOoA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>968180775</pqid></control><display><type>article</type><title>Milk microbiome signatures of subclinical mastitis‐affected cattle analysed by shotgun sequencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bhatt, V.D ; Ahir, V.B ; Koringa, P.G ; Jakhesara, S.J ; Rank, D.N ; Nauriyal, D.S ; Kunjadia, A.P ; Joshi, C.G</creator><creatorcontrib>Bhatt, V.D ; Ahir, V.B ; Koringa, P.G ; Jakhesara, S.J ; Rank, D.N ; Nauriyal, D.S ; Kunjadia, A.P ; Joshi, C.G</creatorcontrib><description>Aims: Metagenomic analysis of milk samples collected from Kankrej, Gir (Bos indicus) and crossbred (Bos taurus × B. indicus) cattle harbouring subclinical mastitis was carried out by next‐generation sequencing 454 GS‐FLX technology to elucidate the microbial community structure of cattle milk. Methods and Results: Milk samples from Kankrej, Gir and crossbred cattle were subjected to metagenomic profiling by pyrosequencing. The Metagenomic analysis produced 63·07, 11·09 and 7·87 million base pairs (Mb) of sequence data, assembled in 264 798, 56 114 and 36 762 sequences with an average read length of 238, 197 and 214 nucleotides in Kankrej, Gir and crossbred cattle, respectively. Phylogenetic and metabolic profiles by the web‐based tool MG‐RAST revealed that the members of Enterobacteriales were predominant in mastitic milk followed by Pseudomonadales, Bacillales and Lactobacillales. Around 56 different species with varying abundance were detected in the subclinically infected milk. Escherichia coli was found to be the most predominant species in Kankrej and Gir cattle followed by Pseudomonas aeruginosa, Pseudomonas mendocina, Shigella flexneri and Bacillus cereus. In crossbred cattle, Staphylococcus aureus followed by Klebsiella pneumoniae, Staphylococcus epidermidis and E. coli were detected in descending order. Metabolic profiling indicated fluoroquinolones, methicillin, copper, cobalt–zinc–cadmium as the groups of antibiotics and toxic compounds to which the organisms showed resistance. Sequences indicating potential of organisms exhibiting multidrug resistance against antibiotics and resistance to toxic compounds were also present. Interestingly, presence of bacteriophages against Staph. aureus, E. coli, Enterobacter and Yersinia species was also observed. Conclusions: The analysis identified potential infectious organisms in mastitis, resistance of organisms to antibiotics and chemical compounds and the natural resistance potential of dairy cows. Significance and Impact of the Study: The findings of this study may help in formulating strategies for the prevention and treatment of mastitis in dairy animals and consequently in reducing economic losses incurred because of it.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2012.05244.x</identifier><identifier>PMID: 22277077</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - therapeutic use ; antibiotic resistance ; Bacillus cereus ; Bacteria - classification ; Bacteria - drug effects ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; bacteriophages ; Biological and medical sciences ; Bos ; Bos indicus ; cadmium ; Cattle ; cobalt ; community structure ; copper ; crossbreds ; Crosses, Genetic ; dairy cows ; economics ; Enterobacter ; Escherichia coli ; Female ; fluoroquinolones ; Fundamental and applied biological sciences. Psychology ; High-Throughput Nucleotide Sequencing ; Klebsiella pneumoniae ; mastitis ; Mastitis, Bovine - drug therapy ; Mastitis, Bovine - genetics ; Mastitis, Bovine - microbiology ; metabolomics ; metagenomics ; methicillin ; MG-RAST ; Microbiology ; microbiome ; milk ; Milk - microbiology ; milk analysis ; multiple drug resistance ; next-generation sequencing ; nucleotides ; phylogeny ; Pseudomonadales ; Pseudomonas aeruginosa ; Pseudomonas mendocina ; Shigella flexneri ; Staphylococcus aureus ; Staphylococcus epidermidis ; subclinical mastitis ; toxicity ; Yersinia ; zebu ; zinc</subject><ispartof>Journal of applied microbiology, 2012-04, Vol.112 (4), p.639-650</ispartof><rights>2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5494-47200f8a92950ce5ca90f478b8b7cc46c7fe458cf668fe91f464b6c82f37d7093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2672.2012.05244.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2672.2012.05244.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25617686$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22277077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhatt, V.D</creatorcontrib><creatorcontrib>Ahir, V.B</creatorcontrib><creatorcontrib>Koringa, P.G</creatorcontrib><creatorcontrib>Jakhesara, S.J</creatorcontrib><creatorcontrib>Rank, D.N</creatorcontrib><creatorcontrib>Nauriyal, D.S</creatorcontrib><creatorcontrib>Kunjadia, A.P</creatorcontrib><creatorcontrib>Joshi, C.G</creatorcontrib><title>Milk microbiome signatures of subclinical mastitis‐affected cattle analysed by shotgun sequencing</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims: Metagenomic analysis of milk samples collected from Kankrej, Gir (Bos indicus) and crossbred (Bos taurus × B. indicus) cattle harbouring subclinical mastitis was carried out by next‐generation sequencing 454 GS‐FLX technology to elucidate the microbial community structure of cattle milk. Methods and Results: Milk samples from Kankrej, Gir and crossbred cattle were subjected to metagenomic profiling by pyrosequencing. The Metagenomic analysis produced 63·07, 11·09 and 7·87 million base pairs (Mb) of sequence data, assembled in 264 798, 56 114 and 36 762 sequences with an average read length of 238, 197 and 214 nucleotides in Kankrej, Gir and crossbred cattle, respectively. Phylogenetic and metabolic profiles by the web‐based tool MG‐RAST revealed that the members of Enterobacteriales were predominant in mastitic milk followed by Pseudomonadales, Bacillales and Lactobacillales. Around 56 different species with varying abundance were detected in the subclinically infected milk. Escherichia coli was found to be the most predominant species in Kankrej and Gir cattle followed by Pseudomonas aeruginosa, Pseudomonas mendocina, Shigella flexneri and Bacillus cereus. In crossbred cattle, Staphylococcus aureus followed by Klebsiella pneumoniae, Staphylococcus epidermidis and E. coli were detected in descending order. Metabolic profiling indicated fluoroquinolones, methicillin, copper, cobalt–zinc–cadmium as the groups of antibiotics and toxic compounds to which the organisms showed resistance. Sequences indicating potential of organisms exhibiting multidrug resistance against antibiotics and resistance to toxic compounds were also present. Interestingly, presence of bacteriophages against Staph. aureus, E. coli, Enterobacter and Yersinia species was also observed. Conclusions: The analysis identified potential infectious organisms in mastitis, resistance of organisms to antibiotics and chemical compounds and the natural resistance potential of dairy cows. Significance and Impact of the Study: The findings of this study may help in formulating strategies for the prevention and treatment of mastitis in dairy animals and consequently in reducing economic losses incurred because of it.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>antibiotic resistance</subject><subject>Bacillus cereus</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>bacteriophages</subject><subject>Biological and medical sciences</subject><subject>Bos</subject><subject>Bos indicus</subject><subject>cadmium</subject><subject>Cattle</subject><subject>cobalt</subject><subject>community structure</subject><subject>copper</subject><subject>crossbreds</subject><subject>Crosses, Genetic</subject><subject>dairy cows</subject><subject>economics</subject><subject>Enterobacter</subject><subject>Escherichia coli</subject><subject>Female</subject><subject>fluoroquinolones</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Klebsiella pneumoniae</subject><subject>mastitis</subject><subject>Mastitis, Bovine - drug therapy</subject><subject>Mastitis, Bovine - genetics</subject><subject>Mastitis, Bovine - microbiology</subject><subject>metabolomics</subject><subject>metagenomics</subject><subject>methicillin</subject><subject>MG-RAST</subject><subject>Microbiology</subject><subject>microbiome</subject><subject>milk</subject><subject>Milk - microbiology</subject><subject>milk analysis</subject><subject>multiple drug resistance</subject><subject>next-generation sequencing</subject><subject>nucleotides</subject><subject>phylogeny</subject><subject>Pseudomonadales</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas mendocina</subject><subject>Shigella flexneri</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus epidermidis</subject><subject>subclinical mastitis</subject><subject>toxicity</subject><subject>Yersinia</subject><subject>zebu</subject><subject>zinc</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1yFCEUhSlLy8SYV1A2lqtugeavFy5iyowmGbNIUrqjaAZGJnR3bOhyZucj-Ix5ktCZcWTDpe53LhwOABCjEuf1YVXiirOCcEFKgjApESOUlutn4HDfeP5U04IhQQ7AqxhXCOEKMf4SHBBChEBCHAIz9-EOtt4MfeP71sLol51O42Aj7B2MY2OC77zRAbY6Jp98fPjzVztnTbILaHRKwULd6bCJ-dxsYPzZp-XYwWh_jbYzvlu-Bi-cDtEe7_YjcHv2-eb0S3F5Nft6enJZGEZrWlBBEHJS16RmyFhmdI0cFbKRjTCGciOcpUwax7l0tsaOctpwI4mrxEKgujoC77dz74c-3x2Tan00NgTd2X6MquYSy-yaZfLNjhyb1i7U_eBbPWzUv3_JwLsdoGP27gadncT_HONYcMkz93HL_fbBbvZ9jNSUk1qpKQ41xaGmnNRTTmqtzk_mU5X1xVbvY7LrvV4Pd4qLSjD1_dtMXfw4m0mEP6l55t9uead7pZdDftPtdZ5Mp2yFrGn1CEDOoA0</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Bhatt, V.D</creator><creator>Ahir, V.B</creator><creator>Koringa, P.G</creator><creator>Jakhesara, S.J</creator><creator>Rank, D.N</creator><creator>Nauriyal, D.S</creator><creator>Kunjadia, A.P</creator><creator>Joshi, C.G</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>201204</creationdate><title>Milk microbiome signatures of subclinical mastitis‐affected cattle analysed by shotgun sequencing</title><author>Bhatt, V.D ; Ahir, V.B ; Koringa, P.G ; Jakhesara, S.J ; Rank, D.N ; Nauriyal, D.S ; Kunjadia, A.P ; Joshi, C.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5494-47200f8a92950ce5ca90f478b8b7cc46c7fe458cf668fe91f464b6c82f37d7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>antibiotic resistance</topic><topic>Bacillus cereus</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>bacteriophages</topic><topic>Biological and medical sciences</topic><topic>Bos</topic><topic>Bos indicus</topic><topic>cadmium</topic><topic>Cattle</topic><topic>cobalt</topic><topic>community structure</topic><topic>copper</topic><topic>crossbreds</topic><topic>Crosses, Genetic</topic><topic>dairy cows</topic><topic>economics</topic><topic>Enterobacter</topic><topic>Escherichia coli</topic><topic>Female</topic><topic>fluoroquinolones</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Klebsiella pneumoniae</topic><topic>mastitis</topic><topic>Mastitis, Bovine - drug therapy</topic><topic>Mastitis, Bovine - genetics</topic><topic>Mastitis, Bovine - microbiology</topic><topic>metabolomics</topic><topic>metagenomics</topic><topic>methicillin</topic><topic>MG-RAST</topic><topic>Microbiology</topic><topic>microbiome</topic><topic>milk</topic><topic>Milk - microbiology</topic><topic>milk analysis</topic><topic>multiple drug resistance</topic><topic>next-generation sequencing</topic><topic>nucleotides</topic><topic>phylogeny</topic><topic>Pseudomonadales</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas mendocina</topic><topic>Shigella flexneri</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus epidermidis</topic><topic>subclinical mastitis</topic><topic>toxicity</topic><topic>Yersinia</topic><topic>zebu</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatt, V.D</creatorcontrib><creatorcontrib>Ahir, V.B</creatorcontrib><creatorcontrib>Koringa, P.G</creatorcontrib><creatorcontrib>Jakhesara, S.J</creatorcontrib><creatorcontrib>Rank, D.N</creatorcontrib><creatorcontrib>Nauriyal, D.S</creatorcontrib><creatorcontrib>Kunjadia, A.P</creatorcontrib><creatorcontrib>Joshi, C.G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatt, V.D</au><au>Ahir, V.B</au><au>Koringa, P.G</au><au>Jakhesara, S.J</au><au>Rank, D.N</au><au>Nauriyal, D.S</au><au>Kunjadia, A.P</au><au>Joshi, C.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Milk microbiome signatures of subclinical mastitis‐affected cattle analysed by shotgun sequencing</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2012-04</date><risdate>2012</risdate><volume>112</volume><issue>4</issue><spage>639</spage><epage>650</epage><pages>639-650</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims: Metagenomic analysis of milk samples collected from Kankrej, Gir (Bos indicus) and crossbred (Bos taurus × B. indicus) cattle harbouring subclinical mastitis was carried out by next‐generation sequencing 454 GS‐FLX technology to elucidate the microbial community structure of cattle milk. Methods and Results: Milk samples from Kankrej, Gir and crossbred cattle were subjected to metagenomic profiling by pyrosequencing. The Metagenomic analysis produced 63·07, 11·09 and 7·87 million base pairs (Mb) of sequence data, assembled in 264 798, 56 114 and 36 762 sequences with an average read length of 238, 197 and 214 nucleotides in Kankrej, Gir and crossbred cattle, respectively. Phylogenetic and metabolic profiles by the web‐based tool MG‐RAST revealed that the members of Enterobacteriales were predominant in mastitic milk followed by Pseudomonadales, Bacillales and Lactobacillales. Around 56 different species with varying abundance were detected in the subclinically infected milk. Escherichia coli was found to be the most predominant species in Kankrej and Gir cattle followed by Pseudomonas aeruginosa, Pseudomonas mendocina, Shigella flexneri and Bacillus cereus. In crossbred cattle, Staphylococcus aureus followed by Klebsiella pneumoniae, Staphylococcus epidermidis and E. coli were detected in descending order. Metabolic profiling indicated fluoroquinolones, methicillin, copper, cobalt–zinc–cadmium as the groups of antibiotics and toxic compounds to which the organisms showed resistance. Sequences indicating potential of organisms exhibiting multidrug resistance against antibiotics and resistance to toxic compounds were also present. Interestingly, presence of bacteriophages against Staph. aureus, E. coli, Enterobacter and Yersinia species was also observed. Conclusions: The analysis identified potential infectious organisms in mastitis, resistance of organisms to antibiotics and chemical compounds and the natural resistance potential of dairy cows. Significance and Impact of the Study: The findings of this study may help in formulating strategies for the prevention and treatment of mastitis in dairy animals and consequently in reducing economic losses incurred because of it.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22277077</pmid><doi>10.1111/j.1365-2672.2012.05244.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2012-04, Vol.112 (4), p.639-650
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_968180775
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Animals
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - therapeutic use
antibiotic resistance
Bacillus cereus
Bacteria - classification
Bacteria - drug effects
Bacteria - genetics
Bacteria - isolation & purification
bacteriophages
Biological and medical sciences
Bos
Bos indicus
cadmium
Cattle
cobalt
community structure
copper
crossbreds
Crosses, Genetic
dairy cows
economics
Enterobacter
Escherichia coli
Female
fluoroquinolones
Fundamental and applied biological sciences. Psychology
High-Throughput Nucleotide Sequencing
Klebsiella pneumoniae
mastitis
Mastitis, Bovine - drug therapy
Mastitis, Bovine - genetics
Mastitis, Bovine - microbiology
metabolomics
metagenomics
methicillin
MG-RAST
Microbiology
microbiome
milk
Milk - microbiology
milk analysis
multiple drug resistance
next-generation sequencing
nucleotides
phylogeny
Pseudomonadales
Pseudomonas aeruginosa
Pseudomonas mendocina
Shigella flexneri
Staphylococcus aureus
Staphylococcus epidermidis
subclinical mastitis
toxicity
Yersinia
zebu
zinc
title Milk microbiome signatures of subclinical mastitis‐affected cattle analysed by shotgun sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Milk%20microbiome%20signatures%20of%20subclinical%20mastitis%E2%80%90affected%20cattle%20analysed%20by%20shotgun%20sequencing&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Bhatt,%20V.D&rft.date=2012-04&rft.volume=112&rft.issue=4&rft.spage=639&rft.epage=650&rft.pages=639-650&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/j.1365-2672.2012.05244.x&rft_dat=%3Cproquest_pubme%3E968180775%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=968180775&rft_id=info:pmid/22277077&rfr_iscdi=true