Assessment of genetic diversity in Azadirachta indica using AFLP markers
Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per e...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 1999-07, Vol.99 (1/2), p.272-279 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1/2 |
container_start_page | 272 |
container_title | Theoretical and applied genetics |
container_volume | 99 |
creator | Singh, A Negi, M.S Rajagopal, J Bhatia, S Tomar, U.K Srivastava, P.S Lakshmikumaran, M |
description | Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per assay with values ranging from 58% to 83.8%. Several rare and accession-specific bands were identified which could be effectively used to distinguish the different genotypes. Genetic relationships within the accessions were evaluated by generating a similarity matrix based on the Jaccard index. The phenetic dendrogram generated by UPGMA as well as principal correspondence analysis separated the 37 Indian genotypes from the four Thai lines. The cluster analysis indicated that neem germplasm within India constitutes a broad genetic base with the values of genetic similarity coefficient ranging from 0.74 to 0.93. Also, the Indian genotypes were more dispersed on the principal correspondence plot, indicating a wide genetic base. The four lines from Thailand, on the other hand, formed a narrow genetic base with similarity coefficients ranging from 0.88 to 0.92. The lowest genetic similarity coefficient value (0.47) was observed between an Indian and an exotic genotype. The level of genetic variation detected within the neem accessions with AFLP analysis suggests that it is an efficient marker technology for delineating genetic relationships amongst genotypes and estimating genetic diversity, thereby enabling the formulation of appropriate strategies for conservation and tree improvement programs. |
doi_str_mv | 10.1007/s001220051232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968177525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17311952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-91befaef405b6db72f9052bf523b213373b86471de4f547cc17b54bf9267cdd53</originalsourceid><addsrcrecordid>eNp90MFLwzAUBvAgCs7p0bNFRE_Vl5dkaY9DnAoDBfVc0jSZ0a3VvE6Yf70ZE0QPnkLg917yfYwdcjjnAPqCADgigOIocIsNuBSYI0rcZgMACbnSCnfZHtELAKACMWA3YyJHtHBtn3U-m7nW9cFmTfhwkUK_ykKbjT9NE6Kxz71J1yZYky0ptLNsPJneZwsTX5PdZzvezMkdfJ9D9jS5ery8yad317eX42luhS76vOS188Z5CaoeNbVGX4LC2isUNXIhtKiLkdS8cdIrqa3lulay9iWOtG0aJYbsbLP3LXbvS0d9tQhk3XxuWtctqSpHBdcp51qe_iu5FpyX6eEhO_4DX7plbFOKqpCqAImoE8o3yMaOKDpfvcWQsq8qDtW6_upX_cmffC81ZM3cR9PaQD9DRZn6WH_yaMO86Sozi4k8PSBwAViKlFmKLwcRi3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>845804227</pqid></control><display><type>article</type><title>Assessment of genetic diversity in Azadirachta indica using AFLP markers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, A ; Negi, M.S ; Rajagopal, J ; Bhatia, S ; Tomar, U.K ; Srivastava, P.S ; Lakshmikumaran, M</creator><creatorcontrib>Singh, A ; Negi, M.S ; Rajagopal, J ; Bhatia, S ; Tomar, U.K ; Srivastava, P.S ; Lakshmikumaran, M</creatorcontrib><description>Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per assay with values ranging from 58% to 83.8%. Several rare and accession-specific bands were identified which could be effectively used to distinguish the different genotypes. Genetic relationships within the accessions were evaluated by generating a similarity matrix based on the Jaccard index. The phenetic dendrogram generated by UPGMA as well as principal correspondence analysis separated the 37 Indian genotypes from the four Thai lines. The cluster analysis indicated that neem germplasm within India constitutes a broad genetic base with the values of genetic similarity coefficient ranging from 0.74 to 0.93. Also, the Indian genotypes were more dispersed on the principal correspondence plot, indicating a wide genetic base. The four lines from Thailand, on the other hand, formed a narrow genetic base with similarity coefficients ranging from 0.88 to 0.92. The lowest genetic similarity coefficient value (0.47) was observed between an Indian and an exotic genotype. The level of genetic variation detected within the neem accessions with AFLP analysis suggests that it is an efficient marker technology for delineating genetic relationships amongst genotypes and estimating genetic diversity, thereby enabling the formulation of appropriate strategies for conservation and tree improvement programs.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s001220051232</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>amplified fragment length polymorphism ; Azadirachta indica ; Biological and medical sciences ; Classical genetics, quantitative genetics, hybrids ; cluster analysis ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; Genetic diversity ; genetic markers ; genetic variation ; Genetics of eukaryotes. Biological and molecular evolution ; genotype ; germplasm ; lines ; principal correspondence analysis ; Pteridophyta, spermatophyta ; Seeds ; statistical analysis ; Trees ; Vegetals</subject><ispartof>Theoretical and applied genetics, 1999-07, Vol.99 (1/2), p.272-279</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-91befaef405b6db72f9052bf523b213373b86471de4f547cc17b54bf9267cdd53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1893785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, A</creatorcontrib><creatorcontrib>Negi, M.S</creatorcontrib><creatorcontrib>Rajagopal, J</creatorcontrib><creatorcontrib>Bhatia, S</creatorcontrib><creatorcontrib>Tomar, U.K</creatorcontrib><creatorcontrib>Srivastava, P.S</creatorcontrib><creatorcontrib>Lakshmikumaran, M</creatorcontrib><title>Assessment of genetic diversity in Azadirachta indica using AFLP markers</title><title>Theoretical and applied genetics</title><description>Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per assay with values ranging from 58% to 83.8%. Several rare and accession-specific bands were identified which could be effectively used to distinguish the different genotypes. Genetic relationships within the accessions were evaluated by generating a similarity matrix based on the Jaccard index. The phenetic dendrogram generated by UPGMA as well as principal correspondence analysis separated the 37 Indian genotypes from the four Thai lines. The cluster analysis indicated that neem germplasm within India constitutes a broad genetic base with the values of genetic similarity coefficient ranging from 0.74 to 0.93. Also, the Indian genotypes were more dispersed on the principal correspondence plot, indicating a wide genetic base. The four lines from Thailand, on the other hand, formed a narrow genetic base with similarity coefficients ranging from 0.88 to 0.92. The lowest genetic similarity coefficient value (0.47) was observed between an Indian and an exotic genotype. The level of genetic variation detected within the neem accessions with AFLP analysis suggests that it is an efficient marker technology for delineating genetic relationships amongst genotypes and estimating genetic diversity, thereby enabling the formulation of appropriate strategies for conservation and tree improvement programs.</description><subject>amplified fragment length polymorphism</subject><subject>Azadirachta indica</subject><subject>Biological and medical sciences</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>cluster analysis</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic diversity</subject><subject>genetic markers</subject><subject>genetic variation</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genotype</subject><subject>germplasm</subject><subject>lines</subject><subject>principal correspondence analysis</subject><subject>Pteridophyta, spermatophyta</subject><subject>Seeds</subject><subject>statistical analysis</subject><subject>Trees</subject><subject>Vegetals</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90MFLwzAUBvAgCs7p0bNFRE_Vl5dkaY9DnAoDBfVc0jSZ0a3VvE6Yf70ZE0QPnkLg917yfYwdcjjnAPqCADgigOIocIsNuBSYI0rcZgMACbnSCnfZHtELAKACMWA3YyJHtHBtn3U-m7nW9cFmTfhwkUK_ykKbjT9NE6Kxz71J1yZYky0ptLNsPJneZwsTX5PdZzvezMkdfJ9D9jS5ery8yad317eX42luhS76vOS188Z5CaoeNbVGX4LC2isUNXIhtKiLkdS8cdIrqa3lulay9iWOtG0aJYbsbLP3LXbvS0d9tQhk3XxuWtctqSpHBdcp51qe_iu5FpyX6eEhO_4DX7plbFOKqpCqAImoE8o3yMaOKDpfvcWQsq8qDtW6_upX_cmffC81ZM3cR9PaQD9DRZn6WH_yaMO86Sozi4k8PSBwAViKlFmKLwcRi3o</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Singh, A</creator><creator>Negi, M.S</creator><creator>Rajagopal, J</creator><creator>Bhatia, S</creator><creator>Tomar, U.K</creator><creator>Srivastava, P.S</creator><creator>Lakshmikumaran, M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope></search><sort><creationdate>19990701</creationdate><title>Assessment of genetic diversity in Azadirachta indica using AFLP markers</title><author>Singh, A ; Negi, M.S ; Rajagopal, J ; Bhatia, S ; Tomar, U.K ; Srivastava, P.S ; Lakshmikumaran, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-91befaef405b6db72f9052bf523b213373b86471de4f547cc17b54bf9267cdd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>amplified fragment length polymorphism</topic><topic>Azadirachta indica</topic><topic>Biological and medical sciences</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>cluster analysis</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic diversity</topic><topic>genetic markers</topic><topic>genetic variation</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genotype</topic><topic>germplasm</topic><topic>lines</topic><topic>principal correspondence analysis</topic><topic>Pteridophyta, spermatophyta</topic><topic>Seeds</topic><topic>statistical analysis</topic><topic>Trees</topic><topic>Vegetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, A</creatorcontrib><creatorcontrib>Negi, M.S</creatorcontrib><creatorcontrib>Rajagopal, J</creatorcontrib><creatorcontrib>Bhatia, S</creatorcontrib><creatorcontrib>Tomar, U.K</creatorcontrib><creatorcontrib>Srivastava, P.S</creatorcontrib><creatorcontrib>Lakshmikumaran, M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, A</au><au>Negi, M.S</au><au>Rajagopal, J</au><au>Bhatia, S</au><au>Tomar, U.K</au><au>Srivastava, P.S</au><au>Lakshmikumaran, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of genetic diversity in Azadirachta indica using AFLP markers</atitle><jtitle>Theoretical and applied genetics</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>99</volume><issue>1/2</issue><spage>272</spage><epage>279</epage><pages>272-279</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per assay with values ranging from 58% to 83.8%. Several rare and accession-specific bands were identified which could be effectively used to distinguish the different genotypes. Genetic relationships within the accessions were evaluated by generating a similarity matrix based on the Jaccard index. The phenetic dendrogram generated by UPGMA as well as principal correspondence analysis separated the 37 Indian genotypes from the four Thai lines. The cluster analysis indicated that neem germplasm within India constitutes a broad genetic base with the values of genetic similarity coefficient ranging from 0.74 to 0.93. Also, the Indian genotypes were more dispersed on the principal correspondence plot, indicating a wide genetic base. The four lines from Thailand, on the other hand, formed a narrow genetic base with similarity coefficients ranging from 0.88 to 0.92. The lowest genetic similarity coefficient value (0.47) was observed between an Indian and an exotic genotype. The level of genetic variation detected within the neem accessions with AFLP analysis suggests that it is an efficient marker technology for delineating genetic relationships amongst genotypes and estimating genetic diversity, thereby enabling the formulation of appropriate strategies for conservation and tree improvement programs.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s001220051232</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 1999-07, Vol.99 (1/2), p.272-279 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_968177525 |
source | SpringerLink Journals - AutoHoldings |
subjects | amplified fragment length polymorphism Azadirachta indica Biological and medical sciences Classical genetics, quantitative genetics, hybrids cluster analysis Flowers & plants Fundamental and applied biological sciences. Psychology Genetic diversity genetic markers genetic variation Genetics of eukaryotes. Biological and molecular evolution genotype germplasm lines principal correspondence analysis Pteridophyta, spermatophyta Seeds statistical analysis Trees Vegetals |
title | Assessment of genetic diversity in Azadirachta indica using AFLP markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20genetic%20diversity%20in%20Azadirachta%20indica%20using%20AFLP%20markers&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Singh,%20A&rft.date=1999-07-01&rft.volume=99&rft.issue=1/2&rft.spage=272&rft.epage=279&rft.pages=272-279&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/s001220051232&rft_dat=%3Cproquest_cross%3E17311952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=845804227&rft_id=info:pmid/&rfr_iscdi=true |