Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development

Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2012-04, Vol.8 (4), p.1481-1489
Hauptverfasser: Guex, A.G., Kocher, F.M., Fortunato, G., Körner, E., Hegemann, D., Carrel, T.P., Tevaearai, H.T., Giraud, M.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 4
container_start_page 1481
container_title Acta biomaterialia
container_volume 8
creator Guex, A.G.
Kocher, F.M.
Fortunato, G.
Körner, E.
Hegemann, D.
Carrel, T.P.
Tevaearai, H.T.
Giraud, M.N.
description Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8μm) or nano (237±98nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
doi_str_mv 10.1016/j.actbio.2011.12.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968176865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706112000049</els_id><sourcerecordid>924963975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-312cb57fb6322ac8672f802844380e3948a50e1c2af5994dcb8706b844cc3db83</originalsourceid><addsrcrecordid>eNqFkc1O3TAQha0KVCjtGyCaXVcJ_klsZ4OEUClISCwo21rOZAK-SuKL7SDx9vgqlCWsxqP5ZnxmDiHHjFaMMnm6qSykzvmKU8YqxisqxBdyyLTSpWqk3stvVfNSUckOyLcYN5QKzbj-Sg4451JSwQ_Jv0s3Y5mW2c0PhR-KuHQxBZuwsAEeXUJIS8jJ3OdSGCxgAY84uQy9FNvgJ58wFtMSYcQiuRgXLHp8xtFvJ5zTd7I_2DHij7d4RO4vf_-9uCpvbv9cX5zflFAzlUrBOHSNGjopOLegpeKDplzXtdAURVtr21BkwO3QtG3dQ6fzWl2uA4i-0-KI_FrnZklPC8ZkskTAcbQz-iWaVmqmpJbN5ySvWylatSPrlYTgYww4mG1wkw0vhlGzs8BszGqB2VlgGDfZgtx28vbB0k3Yvzf9v3kGfq7AYL2xD8FFc3-XJzSUMqqF2m1zthKYT_bsMJgIDmfA3oVsiOm9-1jDK6Wjo2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924963975</pqid></control><display><type>article</type><title>Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guex, A.G. ; Kocher, F.M. ; Fortunato, G. ; Körner, E. ; Hegemann, D. ; Carrel, T.P. ; Tevaearai, H.T. ; Giraud, M.N.</creator><creatorcontrib>Guex, A.G. ; Kocher, F.M. ; Fortunato, G. ; Körner, E. ; Hegemann, D. ; Carrel, T.P. ; Tevaearai, H.T. ; Giraud, M.N.</creatorcontrib><description>Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8μm) or nano (237±98nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2011.12.033</identifier><identifier>PMID: 22266032</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell Count ; cell culture ; Cell Differentiation - drug effects ; Cell Line ; Cell Survival - drug effects ; chemistry ; coatings ; Desmin - metabolism ; Electrospinning ; Fluorescent Antibody Technique ; hydrocarbons ; mechanical properties ; Mice ; Muscle Development - drug effects ; Muscle Development - physiology ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle tissue engineering ; muscles ; Myoblasts - cytology ; Myoblasts - drug effects ; Myoblasts - ultrastructure ; myocardial infarction ; myocardium ; myocytes ; Myosin Heavy Chains - metabolism ; Myotube formation ; Nanofibers - ultrastructure ; neoplasms ; oxygen ; Photoelectron Spectroscopy ; Plasma-coating ; Polyesters - pharmacology ; process design ; radio waves ; Surface Properties - drug effects ; tissue engineering ; Tissue Engineering - methods ; viability</subject><ispartof>Acta biomaterialia, 2012-04, Vol.8 (4), p.1481-1489</ispartof><rights>2012 Acta Materialia Inc.</rights><rights>Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-312cb57fb6322ac8672f802844380e3948a50e1c2af5994dcb8706b844cc3db83</citedby><cites>FETCH-LOGICAL-c417t-312cb57fb6322ac8672f802844380e3948a50e1c2af5994dcb8706b844cc3db83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2011.12.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22266032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guex, A.G.</creatorcontrib><creatorcontrib>Kocher, F.M.</creatorcontrib><creatorcontrib>Fortunato, G.</creatorcontrib><creatorcontrib>Körner, E.</creatorcontrib><creatorcontrib>Hegemann, D.</creatorcontrib><creatorcontrib>Carrel, T.P.</creatorcontrib><creatorcontrib>Tevaearai, H.T.</creatorcontrib><creatorcontrib>Giraud, M.N.</creatorcontrib><title>Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8μm) or nano (237±98nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.</description><subject>Animals</subject><subject>Cell Count</subject><subject>cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>chemistry</subject><subject>coatings</subject><subject>Desmin - metabolism</subject><subject>Electrospinning</subject><subject>Fluorescent Antibody Technique</subject><subject>hydrocarbons</subject><subject>mechanical properties</subject><subject>Mice</subject><subject>Muscle Development - drug effects</subject><subject>Muscle Development - physiology</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle tissue engineering</subject><subject>muscles</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - drug effects</subject><subject>Myoblasts - ultrastructure</subject><subject>myocardial infarction</subject><subject>myocardium</subject><subject>myocytes</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>Myotube formation</subject><subject>Nanofibers - ultrastructure</subject><subject>neoplasms</subject><subject>oxygen</subject><subject>Photoelectron Spectroscopy</subject><subject>Plasma-coating</subject><subject>Polyesters - pharmacology</subject><subject>process design</subject><subject>radio waves</subject><subject>Surface Properties - drug effects</subject><subject>tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>viability</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1O3TAQha0KVCjtGyCaXVcJ_klsZ4OEUClISCwo21rOZAK-SuKL7SDx9vgqlCWsxqP5ZnxmDiHHjFaMMnm6qSykzvmKU8YqxisqxBdyyLTSpWqk3stvVfNSUckOyLcYN5QKzbj-Sg4451JSwQ_Jv0s3Y5mW2c0PhR-KuHQxBZuwsAEeXUJIS8jJ3OdSGCxgAY84uQy9FNvgJ58wFtMSYcQiuRgXLHp8xtFvJ5zTd7I_2DHij7d4RO4vf_-9uCpvbv9cX5zflFAzlUrBOHSNGjopOLegpeKDplzXtdAURVtr21BkwO3QtG3dQ6fzWl2uA4i-0-KI_FrnZklPC8ZkskTAcbQz-iWaVmqmpJbN5ySvWylatSPrlYTgYww4mG1wkw0vhlGzs8BszGqB2VlgGDfZgtx28vbB0k3Yvzf9v3kGfq7AYL2xD8FFc3-XJzSUMqqF2m1zthKYT_bsMJgIDmfA3oVsiOm9-1jDK6Wjo2g</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Guex, A.G.</creator><creator>Kocher, F.M.</creator><creator>Fortunato, G.</creator><creator>Körner, E.</creator><creator>Hegemann, D.</creator><creator>Carrel, T.P.</creator><creator>Tevaearai, H.T.</creator><creator>Giraud, M.N.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120401</creationdate><title>Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development</title><author>Guex, A.G. ; Kocher, F.M. ; Fortunato, G. ; Körner, E. ; Hegemann, D. ; Carrel, T.P. ; Tevaearai, H.T. ; Giraud, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-312cb57fb6322ac8672f802844380e3948a50e1c2af5994dcb8706b844cc3db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Cell Count</topic><topic>cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>chemistry</topic><topic>coatings</topic><topic>Desmin - metabolism</topic><topic>Electrospinning</topic><topic>Fluorescent Antibody Technique</topic><topic>hydrocarbons</topic><topic>mechanical properties</topic><topic>Mice</topic><topic>Muscle Development - drug effects</topic><topic>Muscle Development - physiology</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle tissue engineering</topic><topic>muscles</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - drug effects</topic><topic>Myoblasts - ultrastructure</topic><topic>myocardial infarction</topic><topic>myocardium</topic><topic>myocytes</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>Myotube formation</topic><topic>Nanofibers - ultrastructure</topic><topic>neoplasms</topic><topic>oxygen</topic><topic>Photoelectron Spectroscopy</topic><topic>Plasma-coating</topic><topic>Polyesters - pharmacology</topic><topic>process design</topic><topic>radio waves</topic><topic>Surface Properties - drug effects</topic><topic>tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guex, A.G.</creatorcontrib><creatorcontrib>Kocher, F.M.</creatorcontrib><creatorcontrib>Fortunato, G.</creatorcontrib><creatorcontrib>Körner, E.</creatorcontrib><creatorcontrib>Hegemann, D.</creatorcontrib><creatorcontrib>Carrel, T.P.</creatorcontrib><creatorcontrib>Tevaearai, H.T.</creatorcontrib><creatorcontrib>Giraud, M.N.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guex, A.G.</au><au>Kocher, F.M.</au><au>Fortunato, G.</au><au>Körner, E.</au><au>Hegemann, D.</au><au>Carrel, T.P.</au><au>Tevaearai, H.T.</au><au>Giraud, M.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>8</volume><issue>4</issue><spage>1481</spage><epage>1489</epage><pages>1481-1489</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8μm) or nano (237±98nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22266032</pmid><doi>10.1016/j.actbio.2011.12.033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2012-04, Vol.8 (4), p.1481-1489
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_968176865
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Cell Count
cell culture
Cell Differentiation - drug effects
Cell Line
Cell Survival - drug effects
chemistry
coatings
Desmin - metabolism
Electrospinning
Fluorescent Antibody Technique
hydrocarbons
mechanical properties
Mice
Muscle Development - drug effects
Muscle Development - physiology
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - metabolism
Muscle tissue engineering
muscles
Myoblasts - cytology
Myoblasts - drug effects
Myoblasts - ultrastructure
myocardial infarction
myocardium
myocytes
Myosin Heavy Chains - metabolism
Myotube formation
Nanofibers - ultrastructure
neoplasms
oxygen
Photoelectron Spectroscopy
Plasma-coating
Polyesters - pharmacology
process design
radio waves
Surface Properties - drug effects
tissue engineering
Tissue Engineering - methods
viability
title Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-tuning%20of%20substrate%20architecture%20and%20surface%20chemistry%20promotes%20muscle%20tissue%20development&rft.jtitle=Acta%20biomaterialia&rft.au=Guex,%20A.G.&rft.date=2012-04-01&rft.volume=8&rft.issue=4&rft.spage=1481&rft.epage=1489&rft.pages=1481-1489&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2011.12.033&rft_dat=%3Cproquest_cross%3E924963975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924963975&rft_id=info:pmid/22266032&rft_els_id=S1742706112000049&rfr_iscdi=true