Synthesis and evaluation of fluorobenzoylated di- and tripeptides as inhibitors of cyclooxygenase-2 (COX-2)

A series of fluorobenzoylated di- and tripeptides as potential leads for the development of molecular probes for imaging of COX-2 expression was prepared according to standard Fmoc-based solid-phase peptide synthesis. All peptides were assessed for their COX-2 inhibitory potency and selectivity prof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2012-04, Vol.20 (7), p.2221-2226
Hauptverfasser: Sharma, Sai Kiran, Al-Hourani, Baker Jawabrah, Wuest, Melinda, Mane, Jonathan Y., Tuszynski, Jack, Baracos, Vickie, Suresh, Mavanur, Wuest, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of fluorobenzoylated di- and tripeptides as potential leads for the development of molecular probes for imaging of COX-2 expression was prepared according to standard Fmoc-based solid-phase peptide synthesis. All peptides were assessed for their COX-2 inhibitory potency and selectivity profile in a fluorescence-based COX binding assay. Fluorbenzoylated tripeptide FB-Phe-Cys-Ser-OH was further used in molecular modeling docking studies to determine the binding mode within the active site of COX-2. A series of fluorobenzoylated di- and tripeptides as potential leads for the development of molecular probes for imaging of COX-2 expression was prepared according to standard Fmoc-based solid-phase peptide synthesis. All peptides were assessed for their COX-2 inhibitory potency and selectivity profile in a fluorescence-based COX binding assay. Within the series of 15 peptides tested, cysteine-containing peptides numbered 7, 8, 11 and 12, respectively, were the most potent COX-2 inhibitors possessing IC50 values ranging from 5 to 85μM. Fluorobenzoylated tripeptides 7 and 8 displayed some COX-2 selectivity (COX-2 selectivity index 2.1 and 1.6), whereas fluorobenzoylated dipeptides 11 and 12 were shown not to be COX-2 selective. Fluorbenzoylated tripeptide FB-Phe-Cys-Ser-OH was further used in molecular modeling docking studies to determine the binding mode within the active site of the COX-2 enzyme.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2012.02.021