Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?

Parkinsonian tremor (PD), essential tremor (ET) and voluntarily mimicked tremor represent fundamentally different motor phenomena, yet, magnetoencephalographic and imaging data suggest their origin in the same motor centers of the brain. Using EEG–EMG coherence and coherent source analysis we found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2012-04, Vol.60 (2), p.1331-1339
Hauptverfasser: Muthuraman, M., Heute, U., Arning, K., Anwar, A.R., Elble, R., Deuschl, G., Raethjen, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1339
container_issue 2
container_start_page 1331
container_title NeuroImage (Orlando, Fla.)
container_volume 60
creator Muthuraman, M.
Heute, U.
Arning, K.
Anwar, A.R.
Elble, R.
Deuschl, G.
Raethjen, J.
description Parkinsonian tremor (PD), essential tremor (ET) and voluntarily mimicked tremor represent fundamentally different motor phenomena, yet, magnetoencephalographic and imaging data suggest their origin in the same motor centers of the brain. Using EEG–EMG coherence and coherent source analysis we found a different pattern of corticomuscular delays, time courses and central representations for the basic and double tremor frequencies typical for PD suggesting a wider range defective oscillatory activity. For the basic tremor frequency similar central representations in primary sensorimotor, prefrontal/premotor and diencephalic (e.g. thalamic) areas were reproduced for all three tremors. But renormalized partial directed coherence of the spatially filtered (source) signals revealed a mainly unidirectional flow of information from the diencephalon to cortex in voluntary tremor, e.g. a thalamocortical relay, as opposed to a bidirectional subcortico-cortical flow in PD and ET promoting uncontrollable, e.g. thalamocortical, loop oscillations. Our results help to understand why pathological tremors although originating from the physiological motor network are not under voluntary control and they may contribute to the solution of the puzzle why high frequency thalamic stimulation has a selective effect on pathological tremor leaving voluntary movement performance almost unaltered.
doi_str_mv 10.1016/j.neuroimage.2012.01.088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968175953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191200105X</els_id><sourcerecordid>968175953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-77f850c70248e144b7cc3af3a60c7bc5630835316145cef34b8da2e8fdb4594c3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2KqlDoX6gs9cApqT8T54RaBAUJiUsrjpbjTHa9JPbWdhbx7-vVQiv1wsmW_bwzmnkQwpTUlNDm66b2sMTgZrOCmhHKakJrotQ7dEJJJ6tOtuxof5e8UpR2x-hjShtCSEeF-oCOGWMdp1ycIH-frJsmk51fYQs-RzPhOeQQsYf8FOJjws7jrcnrMIWVs-U7R5hDTNj4Ae_CtPhs4nMJ7WAuBVKNH9Ym49k8QsJ5DXhw4wgRvIWLM_R-NFOCTy_nKfp1ffXz8qa6u_9xe_ntrrKC81y17agksS1hQgEVom-t5WbkpimPvZUNJ4pLThsqpIWRi14NhoEah17ITlh-is4Pdbcx_F4gZT27ZKEM6iEsSXeNoq3sJH-bZIq3TElRyC__kZuwRF_G0FSSRjWKSFYodaBsDClFGPU2Fk_xWVOi9_L0Rv-Tp_fyNKG6yCvRzy8Nln6G4W_w1VYBvh8AKKvbOYi6yNvvdXARbNZDcG93-QN1GrE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506868052</pqid></control><display><type>article</type><title>Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Muthuraman, M. ; Heute, U. ; Arning, K. ; Anwar, A.R. ; Elble, R. ; Deuschl, G. ; Raethjen, J.</creator><creatorcontrib>Muthuraman, M. ; Heute, U. ; Arning, K. ; Anwar, A.R. ; Elble, R. ; Deuschl, G. ; Raethjen, J.</creatorcontrib><description>Parkinsonian tremor (PD), essential tremor (ET) and voluntarily mimicked tremor represent fundamentally different motor phenomena, yet, magnetoencephalographic and imaging data suggest their origin in the same motor centers of the brain. Using EEG–EMG coherence and coherent source analysis we found a different pattern of corticomuscular delays, time courses and central representations for the basic and double tremor frequencies typical for PD suggesting a wider range defective oscillatory activity. For the basic tremor frequency similar central representations in primary sensorimotor, prefrontal/premotor and diencephalic (e.g. thalamic) areas were reproduced for all three tremors. But renormalized partial directed coherence of the spatially filtered (source) signals revealed a mainly unidirectional flow of information from the diencephalon to cortex in voluntary tremor, e.g. a thalamocortical relay, as opposed to a bidirectional subcortico-cortical flow in PD and ET promoting uncontrollable, e.g. thalamocortical, loop oscillations. Our results help to understand why pathological tremors although originating from the physiological motor network are not under voluntary control and they may contribute to the solution of the puzzle why high frequency thalamic stimulation has a selective effect on pathological tremor leaving voluntary movement performance almost unaltered.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2012.01.088</identifier><identifier>PMID: 22293134</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Basal ganglia ; Brain - physiopathology ; Central networks ; Diencephalon ; Electroencephalography ; Female ; Humans ; Magnetoencephalography ; Male ; Medical research ; Middle Aged ; Movement - physiology ; Nerve Net - physiopathology ; Parkinson Disease - physiopathology ; Parkinson's disease ; Patients ; Source analysis ; Thalamic stimulation ; Tremor - physiopathology ; Voluntary control</subject><ispartof>NeuroImage (Orlando, Fla.), 2012-04, Vol.60 (2), p.1331-1339</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 2, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-77f850c70248e144b7cc3af3a60c7bc5630835316145cef34b8da2e8fdb4594c3</citedby><cites>FETCH-LOGICAL-c433t-77f850c70248e144b7cc3af3a60c7bc5630835316145cef34b8da2e8fdb4594c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506868052?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22293134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthuraman, M.</creatorcontrib><creatorcontrib>Heute, U.</creatorcontrib><creatorcontrib>Arning, K.</creatorcontrib><creatorcontrib>Anwar, A.R.</creatorcontrib><creatorcontrib>Elble, R.</creatorcontrib><creatorcontrib>Deuschl, G.</creatorcontrib><creatorcontrib>Raethjen, J.</creatorcontrib><title>Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Parkinsonian tremor (PD), essential tremor (ET) and voluntarily mimicked tremor represent fundamentally different motor phenomena, yet, magnetoencephalographic and imaging data suggest their origin in the same motor centers of the brain. Using EEG–EMG coherence and coherent source analysis we found a different pattern of corticomuscular delays, time courses and central representations for the basic and double tremor frequencies typical for PD suggesting a wider range defective oscillatory activity. For the basic tremor frequency similar central representations in primary sensorimotor, prefrontal/premotor and diencephalic (e.g. thalamic) areas were reproduced for all three tremors. But renormalized partial directed coherence of the spatially filtered (source) signals revealed a mainly unidirectional flow of information from the diencephalon to cortex in voluntary tremor, e.g. a thalamocortical relay, as opposed to a bidirectional subcortico-cortical flow in PD and ET promoting uncontrollable, e.g. thalamocortical, loop oscillations. Our results help to understand why pathological tremors although originating from the physiological motor network are not under voluntary control and they may contribute to the solution of the puzzle why high frequency thalamic stimulation has a selective effect on pathological tremor leaving voluntary movement performance almost unaltered.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Basal ganglia</subject><subject>Brain - physiopathology</subject><subject>Central networks</subject><subject>Diencephalon</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Medical research</subject><subject>Middle Aged</subject><subject>Movement - physiology</subject><subject>Nerve Net - physiopathology</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Source analysis</subject><subject>Thalamic stimulation</subject><subject>Tremor - physiopathology</subject><subject>Voluntary control</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1P3DAQhq2KqlDoX6gs9cApqT8T54RaBAUJiUsrjpbjTHa9JPbWdhbx7-vVQiv1wsmW_bwzmnkQwpTUlNDm66b2sMTgZrOCmhHKakJrotQ7dEJJJ6tOtuxof5e8UpR2x-hjShtCSEeF-oCOGWMdp1ycIH-frJsmk51fYQs-RzPhOeQQsYf8FOJjws7jrcnrMIWVs-U7R5hDTNj4Ae_CtPhs4nMJ7WAuBVKNH9Ym49k8QsJ5DXhw4wgRvIWLM_R-NFOCTy_nKfp1ffXz8qa6u_9xe_ntrrKC81y17agksS1hQgEVom-t5WbkpimPvZUNJ4pLThsqpIWRi14NhoEah17ITlh-is4Pdbcx_F4gZT27ZKEM6iEsSXeNoq3sJH-bZIq3TElRyC__kZuwRF_G0FSSRjWKSFYodaBsDClFGPU2Fk_xWVOi9_L0Rv-Tp_fyNKG6yCvRzy8Nln6G4W_w1VYBvh8AKKvbOYi6yNvvdXARbNZDcG93-QN1GrE7</recordid><startdate>20120402</startdate><enddate>20120402</enddate><creator>Muthuraman, M.</creator><creator>Heute, U.</creator><creator>Arning, K.</creator><creator>Anwar, A.R.</creator><creator>Elble, R.</creator><creator>Deuschl, G.</creator><creator>Raethjen, J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20120402</creationdate><title>Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?</title><author>Muthuraman, M. ; Heute, U. ; Arning, K. ; Anwar, A.R. ; Elble, R. ; Deuschl, G. ; Raethjen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-77f850c70248e144b7cc3af3a60c7bc5630835316145cef34b8da2e8fdb4594c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Basal ganglia</topic><topic>Brain - physiopathology</topic><topic>Central networks</topic><topic>Diencephalon</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Medical research</topic><topic>Middle Aged</topic><topic>Movement - physiology</topic><topic>Nerve Net - physiopathology</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Source analysis</topic><topic>Thalamic stimulation</topic><topic>Tremor - physiopathology</topic><topic>Voluntary control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthuraman, M.</creatorcontrib><creatorcontrib>Heute, U.</creatorcontrib><creatorcontrib>Arning, K.</creatorcontrib><creatorcontrib>Anwar, A.R.</creatorcontrib><creatorcontrib>Elble, R.</creatorcontrib><creatorcontrib>Deuschl, G.</creatorcontrib><creatorcontrib>Raethjen, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthuraman, M.</au><au>Heute, U.</au><au>Arning, K.</au><au>Anwar, A.R.</au><au>Elble, R.</au><au>Deuschl, G.</au><au>Raethjen, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2012-04-02</date><risdate>2012</risdate><volume>60</volume><issue>2</issue><spage>1331</spage><epage>1339</epage><pages>1331-1339</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Parkinsonian tremor (PD), essential tremor (ET) and voluntarily mimicked tremor represent fundamentally different motor phenomena, yet, magnetoencephalographic and imaging data suggest their origin in the same motor centers of the brain. Using EEG–EMG coherence and coherent source analysis we found a different pattern of corticomuscular delays, time courses and central representations for the basic and double tremor frequencies typical for PD suggesting a wider range defective oscillatory activity. For the basic tremor frequency similar central representations in primary sensorimotor, prefrontal/premotor and diencephalic (e.g. thalamic) areas were reproduced for all three tremors. But renormalized partial directed coherence of the spatially filtered (source) signals revealed a mainly unidirectional flow of information from the diencephalon to cortex in voluntary tremor, e.g. a thalamocortical relay, as opposed to a bidirectional subcortico-cortical flow in PD and ET promoting uncontrollable, e.g. thalamocortical, loop oscillations. Our results help to understand why pathological tremors although originating from the physiological motor network are not under voluntary control and they may contribute to the solution of the puzzle why high frequency thalamic stimulation has a selective effect on pathological tremor leaving voluntary movement performance almost unaltered.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22293134</pmid><doi>10.1016/j.neuroimage.2012.01.088</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2012-04, Vol.60 (2), p.1331-1339
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_968175953
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Adult
Aged
Aged, 80 and over
Basal ganglia
Brain - physiopathology
Central networks
Diencephalon
Electroencephalography
Female
Humans
Magnetoencephalography
Male
Medical research
Middle Aged
Movement - physiology
Nerve Net - physiopathology
Parkinson Disease - physiopathology
Parkinson's disease
Patients
Source analysis
Thalamic stimulation
Tremor - physiopathology
Voluntary control
title Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillating%20central%20motor%20networks%20in%20pathological%20tremors%20and%20voluntary%20movements.%20What%20makes%20the%20difference?&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Muthuraman,%20M.&rft.date=2012-04-02&rft.volume=60&rft.issue=2&rft.spage=1331&rft.epage=1339&rft.pages=1331-1339&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2012.01.088&rft_dat=%3Cproquest_cross%3E968175953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506868052&rft_id=info:pmid/22293134&rft_els_id=S105381191200105X&rfr_iscdi=true