Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System

Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2012-02, Vol.73 (4), p.713-728
Hauptverfasser: Weng, Qinjie, Chen, Ying, Wang, Haibo, Xu, Xiaomei, Yang, Bo, He, Qiaojun, Shou, Weinian, Chen, Yan, Higashi, Yujiro, van den Berghe, Veronique, Seuntjens, Eve, Kernie, Steven G., Bukshpun, Polina, Sherr, Elliott H., Huylebroeck, Danny, Lu, Q. Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 4
container_start_page 713
container_title Neuron (Cambridge, Mass.)
container_volume 73
creator Weng, Qinjie
Chen, Ying
Wang, Haibo
Xu, Xiaomei
Yang, Bo
He, Qiaojun
Shou, Weinian
Chen, Yan
Higashi, Yujiro
van den Berghe, Veronique
Seuntjens, Eve
Kernie, Steven G.
Bukshpun, Polina
Sherr, Elliott H.
Huylebroeck, Danny
Lu, Q. Richard
description Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. ► Zinc finger homeobox transcription factor Sip1/Zfhx1b is required for CNS myelination ► Sip1 promotes CNS myelination by modulating BMP-Smad signaling activity ► Identification of a new oligodendrocyte-enriched gene Smad7 as a key Sip1 target ► Smad7 is both sufficient and critical for oligodendrocyte differentiation Weng et al. find the transcription factor Sip1 governs myelination by modulating Smad signaling and reveal a key Sip1-induced target, Smad7, which promotes oligodendrocyte differentiation by blocking BMP and β-catenin negative regulatory pathways.
doi_str_mv 10.1016/j.neuron.2011.12.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968174302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312000402</els_id><sourcerecordid>923955688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-1cd7e058b9c8b1d0617e5496c1f9efadad338f5f2b85d660c8da77d8dd96e0883</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEokPhDRCyxIJVgn9ix94goSk_I7WAGFhbjn1TPMrYUzupNEveHE9TWLCAjS1dfefYul9VPSe4IZiI17smwJxiaCgmpCG0wZQ8qFYEq65uiVIPqxWWStSCduysepLzDmPSckUeV2eUMsF5K1bVz4vZjPVVdIDKMY9m8jGgOKDt3ji09dfBjD5co_54N6k3YYJk7HSafUlxAh8KdSBok9FXuJl9AoeGmNDVEUpwqSvM9APQGsKUzIg-QbqNc0bbY55g_7R6NJgxw7P7-7z6_v7dt_XH-vLzh8367WVtOWNTTazrAHPZKyt74rAgHfBWCUsGBYNxxjEmBz7QXnInBLbSma5z0jklAEvJzqtXS-8hxZsZ8qT3PlsYRxOg_EYrIUnXMkz_T1KmOBd3nS__IndxTmVlWRPBWtlxzFSh2oWyKeacYNCH5PcmHTXB-uRS7_TiUp9cakJ1cVliL-7L534P7k_ot7wCvFkAKGu79ZB0th6CBVcs2Em76P_9wi-EULJD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634875039</pqid></control><display><type>article</type><title>Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Weng, Qinjie ; Chen, Ying ; Wang, Haibo ; Xu, Xiaomei ; Yang, Bo ; He, Qiaojun ; Shou, Weinian ; Chen, Yan ; Higashi, Yujiro ; van den Berghe, Veronique ; Seuntjens, Eve ; Kernie, Steven G. ; Bukshpun, Polina ; Sherr, Elliott H. ; Huylebroeck, Danny ; Lu, Q. Richard</creator><creatorcontrib>Weng, Qinjie ; Chen, Ying ; Wang, Haibo ; Xu, Xiaomei ; Yang, Bo ; He, Qiaojun ; Shou, Weinian ; Chen, Yan ; Higashi, Yujiro ; van den Berghe, Veronique ; Seuntjens, Eve ; Kernie, Steven G. ; Bukshpun, Polina ; Sherr, Elliott H. ; Huylebroeck, Danny ; Lu, Q. Richard</creatorcontrib><description>Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. ► Zinc finger homeobox transcription factor Sip1/Zfhx1b is required for CNS myelination ► Sip1 promotes CNS myelination by modulating BMP-Smad signaling activity ► Identification of a new oligodendrocyte-enriched gene Smad7 as a key Sip1 target ► Smad7 is both sufficient and critical for oligodendrocyte differentiation Weng et al. find the transcription factor Sip1 governs myelination by modulating Smad signaling and reveal a key Sip1-induced target, Smad7, which promotes oligodendrocyte differentiation by blocking BMP and β-catenin negative regulatory pathways.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.12.021</identifier><identifier>PMID: 22365546</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Animals ; Animals, Newborn ; Antagonism ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Bone Morphogenetic Proteins - metabolism ; Caspase 3 - metabolism ; Cell Differentiation - genetics ; Cells, Cultured ; Central Nervous System - cytology ; Central Nervous System - physiology ; Central Nervous System - ultrastructure ; Embryo, Mammalian ; Facies ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental - genetics ; Genomes ; Green Fluorescent Proteins - genetics ; Hirschsprung Disease - genetics ; Hirschsprung Disease - pathology ; Homeodomain Proteins - metabolism ; Humans ; Immunoprecipitation ; Intellectual Disability - genetics ; Intellectual Disability - pathology ; Ki-67 Antigen - metabolism ; Kinases ; Mice ; Mice, Knockout ; Microcephaly - genetics ; Microcephaly - pathology ; Microscopy, Electron, Transmission ; Models, Molecular ; Multiple sclerosis ; Myelin Sheath - metabolism ; Nerve Tissue Proteins - deficiency ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Nervous system ; Oligodendrocyte Transcription Factor 2 ; Oligodendroglia - metabolism ; Oligonucleotide Array Sequence Analysis ; Optic Nerve - embryology ; Optic Nerve - growth &amp; development ; Optic Nerve - metabolism ; Organogenesis ; Proteins ; Receptor, Platelet-Derived Growth Factor alpha - metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Repressor Proteins - metabolism ; RNA, Messenger - metabolism ; Rodents ; Signal Transduction - genetics ; Signal Transduction - physiology ; Smad Proteins - genetics ; Smad Proteins - metabolism ; Smad7 Protein - genetics ; Smad7 Protein - metabolism ; Transcription factors ; Transfection ; Zinc Finger E-box Binding Homeobox 2</subject><ispartof>Neuron (Cambridge, Mass.), 2012-02, Vol.73 (4), p.713-728</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 23, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-1cd7e058b9c8b1d0617e5496c1f9efadad338f5f2b85d660c8da77d8dd96e0883</citedby><cites>FETCH-LOGICAL-c533t-1cd7e058b9c8b1d0617e5496c1f9efadad338f5f2b85d660c8da77d8dd96e0883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627312000402$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22365546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weng, Qinjie</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Wang, Haibo</creatorcontrib><creatorcontrib>Xu, Xiaomei</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>He, Qiaojun</creatorcontrib><creatorcontrib>Shou, Weinian</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Higashi, Yujiro</creatorcontrib><creatorcontrib>van den Berghe, Veronique</creatorcontrib><creatorcontrib>Seuntjens, Eve</creatorcontrib><creatorcontrib>Kernie, Steven G.</creatorcontrib><creatorcontrib>Bukshpun, Polina</creatorcontrib><creatorcontrib>Sherr, Elliott H.</creatorcontrib><creatorcontrib>Huylebroeck, Danny</creatorcontrib><creatorcontrib>Lu, Q. Richard</creatorcontrib><title>Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. ► Zinc finger homeobox transcription factor Sip1/Zfhx1b is required for CNS myelination ► Sip1 promotes CNS myelination by modulating BMP-Smad signaling activity ► Identification of a new oligodendrocyte-enriched gene Smad7 as a key Sip1 target ► Smad7 is both sufficient and critical for oligodendrocyte differentiation Weng et al. find the transcription factor Sip1 governs myelination by modulating Smad signaling and reveal a key Sip1-induced target, Smad7, which promotes oligodendrocyte differentiation by blocking BMP and β-catenin negative regulatory pathways.</description><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Antagonism</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cells, Cultured</subject><subject>Central Nervous System - cytology</subject><subject>Central Nervous System - physiology</subject><subject>Central Nervous System - ultrastructure</subject><subject>Embryo, Mammalian</subject><subject>Facies</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Hirschsprung Disease - genetics</subject><subject>Hirschsprung Disease - pathology</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Intellectual Disability - genetics</subject><subject>Intellectual Disability - pathology</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microcephaly - genetics</subject><subject>Microcephaly - pathology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Molecular</subject><subject>Multiple sclerosis</subject><subject>Myelin Sheath - metabolism</subject><subject>Nerve Tissue Proteins - deficiency</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nervous system</subject><subject>Oligodendrocyte Transcription Factor 2</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Optic Nerve - embryology</subject><subject>Optic Nerve - growth &amp; development</subject><subject>Optic Nerve - metabolism</subject><subject>Organogenesis</subject><subject>Proteins</subject><subject>Receptor, Platelet-Derived Growth Factor alpha - metabolism</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Smad Proteins - genetics</subject><subject>Smad Proteins - metabolism</subject><subject>Smad7 Protein - genetics</subject><subject>Smad7 Protein - metabolism</subject><subject>Transcription factors</subject><subject>Transfection</subject><subject>Zinc Finger E-box Binding Homeobox 2</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEokPhDRCyxIJVgn9ix94goSk_I7WAGFhbjn1TPMrYUzupNEveHE9TWLCAjS1dfefYul9VPSe4IZiI17smwJxiaCgmpCG0wZQ8qFYEq65uiVIPqxWWStSCduysepLzDmPSckUeV2eUMsF5K1bVz4vZjPVVdIDKMY9m8jGgOKDt3ji09dfBjD5co_54N6k3YYJk7HSafUlxAh8KdSBok9FXuJl9AoeGmNDVEUpwqSvM9APQGsKUzIg-QbqNc0bbY55g_7R6NJgxw7P7-7z6_v7dt_XH-vLzh8367WVtOWNTTazrAHPZKyt74rAgHfBWCUsGBYNxxjEmBz7QXnInBLbSma5z0jklAEvJzqtXS-8hxZsZ8qT3PlsYRxOg_EYrIUnXMkz_T1KmOBd3nS__IndxTmVlWRPBWtlxzFSh2oWyKeacYNCH5PcmHTXB-uRS7_TiUp9cakJ1cVliL-7L534P7k_ot7wCvFkAKGu79ZB0th6CBVcs2Em76P_9wi-EULJD</recordid><startdate>20120223</startdate><enddate>20120223</enddate><creator>Weng, Qinjie</creator><creator>Chen, Ying</creator><creator>Wang, Haibo</creator><creator>Xu, Xiaomei</creator><creator>Yang, Bo</creator><creator>He, Qiaojun</creator><creator>Shou, Weinian</creator><creator>Chen, Yan</creator><creator>Higashi, Yujiro</creator><creator>van den Berghe, Veronique</creator><creator>Seuntjens, Eve</creator><creator>Kernie, Steven G.</creator><creator>Bukshpun, Polina</creator><creator>Sherr, Elliott H.</creator><creator>Huylebroeck, Danny</creator><creator>Lu, Q. Richard</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120223</creationdate><title>Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System</title><author>Weng, Qinjie ; Chen, Ying ; Wang, Haibo ; Xu, Xiaomei ; Yang, Bo ; He, Qiaojun ; Shou, Weinian ; Chen, Yan ; Higashi, Yujiro ; van den Berghe, Veronique ; Seuntjens, Eve ; Kernie, Steven G. ; Bukshpun, Polina ; Sherr, Elliott H. ; Huylebroeck, Danny ; Lu, Q. Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-1cd7e058b9c8b1d0617e5496c1f9efadad338f5f2b85d660c8da77d8dd96e0883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Antagonism</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cells, Cultured</topic><topic>Central Nervous System - cytology</topic><topic>Central Nervous System - physiology</topic><topic>Central Nervous System - ultrastructure</topic><topic>Embryo, Mammalian</topic><topic>Facies</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Hirschsprung Disease - genetics</topic><topic>Hirschsprung Disease - pathology</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Intellectual Disability - genetics</topic><topic>Intellectual Disability - pathology</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microcephaly - genetics</topic><topic>Microcephaly - pathology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Molecular</topic><topic>Multiple sclerosis</topic><topic>Myelin Sheath - metabolism</topic><topic>Nerve Tissue Proteins - deficiency</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nervous system</topic><topic>Oligodendrocyte Transcription Factor 2</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Optic Nerve - embryology</topic><topic>Optic Nerve - growth &amp; development</topic><topic>Optic Nerve - metabolism</topic><topic>Organogenesis</topic><topic>Proteins</topic><topic>Receptor, Platelet-Derived Growth Factor alpha - metabolism</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Smad Proteins - genetics</topic><topic>Smad Proteins - metabolism</topic><topic>Smad7 Protein - genetics</topic><topic>Smad7 Protein - metabolism</topic><topic>Transcription factors</topic><topic>Transfection</topic><topic>Zinc Finger E-box Binding Homeobox 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Qinjie</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Wang, Haibo</creatorcontrib><creatorcontrib>Xu, Xiaomei</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>He, Qiaojun</creatorcontrib><creatorcontrib>Shou, Weinian</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Higashi, Yujiro</creatorcontrib><creatorcontrib>van den Berghe, Veronique</creatorcontrib><creatorcontrib>Seuntjens, Eve</creatorcontrib><creatorcontrib>Kernie, Steven G.</creatorcontrib><creatorcontrib>Bukshpun, Polina</creatorcontrib><creatorcontrib>Sherr, Elliott H.</creatorcontrib><creatorcontrib>Huylebroeck, Danny</creatorcontrib><creatorcontrib>Lu, Q. Richard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Qinjie</au><au>Chen, Ying</au><au>Wang, Haibo</au><au>Xu, Xiaomei</au><au>Yang, Bo</au><au>He, Qiaojun</au><au>Shou, Weinian</au><au>Chen, Yan</au><au>Higashi, Yujiro</au><au>van den Berghe, Veronique</au><au>Seuntjens, Eve</au><au>Kernie, Steven G.</au><au>Bukshpun, Polina</au><au>Sherr, Elliott H.</au><au>Huylebroeck, Danny</au><au>Lu, Q. Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-02-23</date><risdate>2012</risdate><volume>73</volume><issue>4</issue><spage>713</spage><epage>728</epage><pages>713-728</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. ► Zinc finger homeobox transcription factor Sip1/Zfhx1b is required for CNS myelination ► Sip1 promotes CNS myelination by modulating BMP-Smad signaling activity ► Identification of a new oligodendrocyte-enriched gene Smad7 as a key Sip1 target ► Smad7 is both sufficient and critical for oligodendrocyte differentiation Weng et al. find the transcription factor Sip1 governs myelination by modulating Smad signaling and reveal a key Sip1-induced target, Smad7, which promotes oligodendrocyte differentiation by blocking BMP and β-catenin negative regulatory pathways.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22365546</pmid><doi>10.1016/j.neuron.2011.12.021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2012-02, Vol.73 (4), p.713-728
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_968174302
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Age Factors
Animals
Animals, Newborn
Antagonism
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Bone Morphogenetic Proteins - metabolism
Caspase 3 - metabolism
Cell Differentiation - genetics
Cells, Cultured
Central Nervous System - cytology
Central Nervous System - physiology
Central Nervous System - ultrastructure
Embryo, Mammalian
Facies
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Developmental - genetics
Genomes
Green Fluorescent Proteins - genetics
Hirschsprung Disease - genetics
Hirschsprung Disease - pathology
Homeodomain Proteins - metabolism
Humans
Immunoprecipitation
Intellectual Disability - genetics
Intellectual Disability - pathology
Ki-67 Antigen - metabolism
Kinases
Mice
Mice, Knockout
Microcephaly - genetics
Microcephaly - pathology
Microscopy, Electron, Transmission
Models, Molecular
Multiple sclerosis
Myelin Sheath - metabolism
Nerve Tissue Proteins - deficiency
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Nervous system
Oligodendrocyte Transcription Factor 2
Oligodendroglia - metabolism
Oligonucleotide Array Sequence Analysis
Optic Nerve - embryology
Optic Nerve - growth & development
Optic Nerve - metabolism
Organogenesis
Proteins
Receptor, Platelet-Derived Growth Factor alpha - metabolism
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Repressor Proteins - metabolism
RNA, Messenger - metabolism
Rodents
Signal Transduction - genetics
Signal Transduction - physiology
Smad Proteins - genetics
Smad Proteins - metabolism
Smad7 Protein - genetics
Smad7 Protein - metabolism
Transcription factors
Transfection
Zinc Finger E-box Binding Homeobox 2
title Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Mode%20Modulation%20of%20Smad%20Signaling%20by%20Smad-Interacting%20Protein%20Sip1%20Is%20Required%20for%20Myelination%20in%20the%20Central%20Nervous%20System&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Weng,%20Qinjie&rft.date=2012-02-23&rft.volume=73&rft.issue=4&rft.spage=713&rft.epage=728&rft.pages=713-728&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.12.021&rft_dat=%3Cproquest_cross%3E923955688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634875039&rft_id=info:pmid/22365546&rft_els_id=S0896627312000402&rfr_iscdi=true