The local-regional species richness relationship: new perspectives on the null-hypothesis

Despite considerable criticism in recent years, the use of local (S L ) and regional species richness (S R ) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of S L and S R with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oikos 2012-03, Vol.121 (3), p.321-326
Hauptverfasser: Szava-Kovats, Robert C., Zobel, Martin, Pärtel, Meelis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 3
container_start_page 321
container_title Oikos
container_volume 121
creator Szava-Kovats, Robert C.
Zobel, Martin
Pärtel, Meelis
description Despite considerable criticism in recent years, the use of local (S L ) and regional species richness (S R ) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of S L and S R with a statistically significant linear or polynomial model indicating unsaturated and saturated communities, respectively. This approach has been the target of much controversy owing to statistical issues, the confounding effects of the arbitrary choice for the size of the local and regional area, and the difficulty in attributing ecological processes to the underlying S L — S R pattern. The statistical issues and effects of scale stem from the lack of statistical independence and induced correlation between S L -S R arising from the mathematical constraint, S L
doi_str_mv 10.1111/j.1600-0706.2011.19603.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_968172414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41428976</jstor_id><sourcerecordid>41428976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4633-92cf7028e2654564d1f77fb4d8917cb2a16f72269f4c5f912f1b27f14c32a4af3</originalsourceid><addsrcrecordid>eNqNkM1u1DAURiNEJYaWR0CKkBCrBP_FjlkgQdVOK6rppgjBxvK4NuPgxsE30868fZ2mmgUrvLGt79wj3a8oSoxqnM_HrsYcoQoJxGuCMK6x5IjWuxfF4hC8LBYIUVRhIuWr4jVAhxASQrBF8fNmY8sQjQ5Vsr997HUoYbDGWyiTN5veQn7YoMecwcYPn8rePpSDTRM1-vvMxb4cs6XfhlBt9kPMH_BwUhw5HcC-eb6Pi-_nZzenF9XV9fLy9MtVZRintJLEOIFIawlvWMPZLXZCuDW7bSUWZk005k4QwqVjpnESE4fXRDjMDCWaaUePiw-zd0jx79bCqO48GBuC7m3cgpK8xYIwzDL57h-yi9uUN84QYUhiKdoMtTNkUgRI1qkh-Tud9gojNTWuOjUVq6Zi1dS4empc7fLo-2e_hlyoS7o3Hg7zpGGybZDM3OeZe_DB7v_br64vvz09s-DtLOhgjOkgyDuSVgqe82rOPYx2d8h1-qO4oKJRP1ZLtfq1pHj1lasL-ghtMqye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924091978</pqid></control><display><type>article</type><title>The local-regional species richness relationship: new perspectives on the null-hypothesis</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals</source><creator>Szava-Kovats, Robert C. ; Zobel, Martin ; Pärtel, Meelis</creator><creatorcontrib>Szava-Kovats, Robert C. ; Zobel, Martin ; Pärtel, Meelis</creatorcontrib><description>Despite considerable criticism in recent years, the use of local (S L ) and regional species richness (S R ) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of S L and S R with a statistically significant linear or polynomial model indicating unsaturated and saturated communities, respectively. This approach has been the target of much controversy owing to statistical issues, the confounding effects of the arbitrary choice for the size of the local and regional area, and the difficulty in attributing ecological processes to the underlying S L — S R pattern. The statistical issues and effects of scale stem from the lack of statistical independence and induced correlation between S L -S R arising from the mathematical constraint, S L &lt;S R .However, by removing this mathematical constraint by means of a logratio transformation, S L -S R relationships can be calculated using ordinary linear regression and with a logical and definitive null-hypothesis based solely on the presence of a statistically significant slope, which provides a quantitative measure of curvature. Simulations of S L -S R relationships with varying curvature and S L :S R eratio demonstrate that the logratio model can accurately measure curvature independent of the S L :S R ratio. Therefore, the tendency for studies with high local: regional area ratio to result in linear S L -S R trends when analysed by traditional regression methods may be mitigated by reanalysis by the logratio model. By alleviating the effects of scale, the logratio model offers a more statistically sound assessment of the S L -S R relationship, which in turn can serve as an effective tool to complement emerging process-based models.</description><identifier>ISSN: 0030-1299</identifier><identifier>EISSN: 1600-0706</identifier><identifier>DOI: 10.1111/j.1600-0706.2011.19603.x</identifier><identifier>CODEN: OIKSAA</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biodiversity ; Biological and medical sciences ; Curvature ; Ecological modeling ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; General aspects ; Hypothesis testing ; Linear regression ; Population ecology ; Regression analysis ; Simulations ; Species diversity ; Statistical significance ; Statistics ; Synecology</subject><ispartof>Oikos, 2012-03, Vol.121 (3), p.321-326</ispartof><rights>Copyright © 2012 Nordic Society Oikos</rights><rights>2011 The Authors</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4633-92cf7028e2654564d1f77fb4d8917cb2a16f72269f4c5f912f1b27f14c32a4af3</citedby><cites>FETCH-LOGICAL-c4633-92cf7028e2654564d1f77fb4d8917cb2a16f72269f4c5f912f1b27f14c32a4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41428976$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41428976$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,1412,27905,27906,45555,45556,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25498509$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Szava-Kovats, Robert C.</creatorcontrib><creatorcontrib>Zobel, Martin</creatorcontrib><creatorcontrib>Pärtel, Meelis</creatorcontrib><title>The local-regional species richness relationship: new perspectives on the null-hypothesis</title><title>Oikos</title><addtitle>Oikos</addtitle><description>Despite considerable criticism in recent years, the use of local (S L ) and regional species richness (S R ) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of S L and S R with a statistically significant linear or polynomial model indicating unsaturated and saturated communities, respectively. This approach has been the target of much controversy owing to statistical issues, the confounding effects of the arbitrary choice for the size of the local and regional area, and the difficulty in attributing ecological processes to the underlying S L — S R pattern. The statistical issues and effects of scale stem from the lack of statistical independence and induced correlation between S L -S R arising from the mathematical constraint, S L &lt;S R .However, by removing this mathematical constraint by means of a logratio transformation, S L -S R relationships can be calculated using ordinary linear regression and with a logical and definitive null-hypothesis based solely on the presence of a statistically significant slope, which provides a quantitative measure of curvature. Simulations of S L -S R relationships with varying curvature and S L :S R eratio demonstrate that the logratio model can accurately measure curvature independent of the S L :S R ratio. Therefore, the tendency for studies with high local: regional area ratio to result in linear S L -S R trends when analysed by traditional regression methods may be mitigated by reanalysis by the logratio model. By alleviating the effects of scale, the logratio model offers a more statistically sound assessment of the S L -S R relationship, which in turn can serve as an effective tool to complement emerging process-based models.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Curvature</subject><subject>Ecological modeling</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Hypothesis testing</subject><subject>Linear regression</subject><subject>Population ecology</subject><subject>Regression analysis</subject><subject>Simulations</subject><subject>Species diversity</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Synecology</subject><issn>0030-1299</issn><issn>1600-0706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkM1u1DAURiNEJYaWR0CKkBCrBP_FjlkgQdVOK6rppgjBxvK4NuPgxsE30868fZ2mmgUrvLGt79wj3a8oSoxqnM_HrsYcoQoJxGuCMK6x5IjWuxfF4hC8LBYIUVRhIuWr4jVAhxASQrBF8fNmY8sQjQ5Vsr997HUoYbDGWyiTN5veQn7YoMecwcYPn8rePpSDTRM1-vvMxb4cs6XfhlBt9kPMH_BwUhw5HcC-eb6Pi-_nZzenF9XV9fLy9MtVZRintJLEOIFIawlvWMPZLXZCuDW7bSUWZk005k4QwqVjpnESE4fXRDjMDCWaaUePiw-zd0jx79bCqO48GBuC7m3cgpK8xYIwzDL57h-yi9uUN84QYUhiKdoMtTNkUgRI1qkh-Tud9gojNTWuOjUVq6Zi1dS4empc7fLo-2e_hlyoS7o3Hg7zpGGybZDM3OeZe_DB7v_br64vvz09s-DtLOhgjOkgyDuSVgqe82rOPYx2d8h1-qO4oKJRP1ZLtfq1pHj1lasL-ghtMqye</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Szava-Kovats, Robert C.</creator><creator>Zobel, Martin</creator><creator>Pärtel, Meelis</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>201203</creationdate><title>The local-regional species richness relationship: new perspectives on the null-hypothesis</title><author>Szava-Kovats, Robert C. ; Zobel, Martin ; Pärtel, Meelis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4633-92cf7028e2654564d1f77fb4d8917cb2a16f72269f4c5f912f1b27f14c32a4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Curvature</topic><topic>Ecological modeling</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Hypothesis testing</topic><topic>Linear regression</topic><topic>Population ecology</topic><topic>Regression analysis</topic><topic>Simulations</topic><topic>Species diversity</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szava-Kovats, Robert C.</creatorcontrib><creatorcontrib>Zobel, Martin</creatorcontrib><creatorcontrib>Pärtel, Meelis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Oikos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szava-Kovats, Robert C.</au><au>Zobel, Martin</au><au>Pärtel, Meelis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The local-regional species richness relationship: new perspectives on the null-hypothesis</atitle><jtitle>Oikos</jtitle><addtitle>Oikos</addtitle><date>2012-03</date><risdate>2012</risdate><volume>121</volume><issue>3</issue><spage>321</spage><epage>326</epage><pages>321-326</pages><issn>0030-1299</issn><eissn>1600-0706</eissn><coden>OIKSAA</coden><abstract>Despite considerable criticism in recent years, the use of local (S L ) and regional species richness (S R ) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of S L and S R with a statistically significant linear or polynomial model indicating unsaturated and saturated communities, respectively. This approach has been the target of much controversy owing to statistical issues, the confounding effects of the arbitrary choice for the size of the local and regional area, and the difficulty in attributing ecological processes to the underlying S L — S R pattern. The statistical issues and effects of scale stem from the lack of statistical independence and induced correlation between S L -S R arising from the mathematical constraint, S L &lt;S R .However, by removing this mathematical constraint by means of a logratio transformation, S L -S R relationships can be calculated using ordinary linear regression and with a logical and definitive null-hypothesis based solely on the presence of a statistically significant slope, which provides a quantitative measure of curvature. Simulations of S L -S R relationships with varying curvature and S L :S R eratio demonstrate that the logratio model can accurately measure curvature independent of the S L :S R ratio. Therefore, the tendency for studies with high local: regional area ratio to result in linear S L -S R trends when analysed by traditional regression methods may be mitigated by reanalysis by the logratio model. By alleviating the effects of scale, the logratio model offers a more statistically sound assessment of the S L -S R relationship, which in turn can serve as an effective tool to complement emerging process-based models.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1600-0706.2011.19603.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-1299
ispartof Oikos, 2012-03, Vol.121 (3), p.321-326
issn 0030-1299
1600-0706
language eng
recordid cdi_proquest_miscellaneous_968172414
source Jstor Complete Legacy; Wiley Online Library Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biodiversity
Biological and medical sciences
Curvature
Ecological modeling
Flowers & plants
Fundamental and applied biological sciences. Psychology
General aspects
Hypothesis testing
Linear regression
Population ecology
Regression analysis
Simulations
Species diversity
Statistical significance
Statistics
Synecology
title The local-regional species richness relationship: new perspectives on the null-hypothesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20local-regional%20species%20richness%20relationship:%20new%20perspectives%20on%20the%20null-hypothesis&rft.jtitle=Oikos&rft.au=Szava-Kovats,%20Robert%20C.&rft.date=2012-03&rft.volume=121&rft.issue=3&rft.spage=321&rft.epage=326&rft.pages=321-326&rft.issn=0030-1299&rft.eissn=1600-0706&rft.coden=OIKSAA&rft_id=info:doi/10.1111/j.1600-0706.2011.19603.x&rft_dat=%3Cjstor_proqu%3E41428976%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924091978&rft_id=info:pmid/&rft_jstor_id=41428976&rfr_iscdi=true