Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells
The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2012-04, Vol.8 (7), p.1029-1037 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1037 |
---|---|
container_issue | 7 |
container_start_page | 1029 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 8 |
creator | Muro, Eleonora Fragola, Alexandra Pons, Thomas Lequeux, Nicolas Ioannou, Andriani Skourides, Paris Dubertret, Benoit |
description | The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid‐sulfobetaine (DHLA‐SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA‐SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin‐conjugated QDs, which may be due to the smaller size of DHLA‐SB QDs and/or to their superior intracellular stability.
Quantum dots (QDs) solubilized with the zwitterionic ligand dihydrolipoic acid‐sulfobetaine present excellent in vivo stability when introduced into cultured cells and embryos. This intracellular stability is much higher than with other QD surface chemistries. When conjugated to streptavidin, these zwitterionic QDs can label an intracellular target with great specificity, higher than commercial streptavidin QDs. |
doi_str_mv | 10.1002/smll.201101787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968107805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835612216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-fe15157bb4b564a76bacd94bc949babc498a5899b667262bb0f1e081d9b7593f3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURiMEakvbLUtkiQVsMvg6iR9LGmipFKiqadWlZWecjksegx-U-fc4mjJCLGBlyzrfsa-_LHsFeAEYk_d-6PsFwQAYGGfPsiOgUOSUE_F8vwd8mL30_gHjAkjJDrJDQgrGK8qOsm09DRvl7HiPLsfgVGv6PvbKoWVQ2vY2bJEaV-hGuXsTZmrq0DL23aRNUHY06DqqMcQBfZyCR482rNFVWJuUj65LNlSvzWB9cNZ4ZEfU2B_pLF3iT7IXneq9OX1aj7Pb80839ee8ubq4rD80eVuWBcs7AxVUTOtSV7RUjGrVrkSpW1EKrXRbCq4qLoSmlBFKtMYdGMxhJTSrRNEVx9nbnXfjpu_R-CDTe-Yx1Wim6KWYP4hxXCXy3T9J4EVFgRCgCX3zF_owRTemORIFIvkIsEQtdlTrJu-d6eTG2UG5rQQs5_rkXJ_c15cCr5-0UQ9mtcd_95UAsQMebW-2_9HJ5Zem-VOe77KpDvNzn1Xum0xmVsm7rxeS3p1xsazP5XXxC-LttpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819078217</pqid></control><display><type>article</type><title>Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Muro, Eleonora ; Fragola, Alexandra ; Pons, Thomas ; Lequeux, Nicolas ; Ioannou, Andriani ; Skourides, Paris ; Dubertret, Benoit</creator><creatorcontrib>Muro, Eleonora ; Fragola, Alexandra ; Pons, Thomas ; Lequeux, Nicolas ; Ioannou, Andriani ; Skourides, Paris ; Dubertret, Benoit</creatorcontrib><description>The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid‐sulfobetaine (DHLA‐SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA‐SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin‐conjugated QDs, which may be due to the smaller size of DHLA‐SB QDs and/or to their superior intracellular stability.
Quantum dots (QDs) solubilized with the zwitterionic ligand dihydrolipoic acid‐sulfobetaine present excellent in vivo stability when introduced into cultured cells and embryos. This intracellular stability is much higher than with other QD surface chemistries. When conjugated to streptavidin, these zwitterionic QDs can label an intracellular target with great specificity, higher than commercial streptavidin QDs.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201101787</identifier><identifier>PMID: 22378567</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Agglomeration ; Animals ; Betaine - analogs & derivatives ; Betaine - chemistry ; Compartments ; Cytoplasm ; Cytoplasm - metabolism ; Electroporation ; Embryo, Nonmammalian - metabolism ; HeLa Cells ; Humans ; intracellular stability ; Ligands ; living cells ; Marking ; Microinjections ; Nanotechnology ; Quantum Dots ; specific staining ; Stability ; sulfobetaine ; Surface chemistry ; Thioctic Acid - analogs & derivatives ; Thioctic Acid - chemistry ; Xenopus laevis</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2012-04, Vol.8 (7), p.1029-1037</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-fe15157bb4b564a76bacd94bc949babc498a5899b667262bb0f1e081d9b7593f3</citedby><cites>FETCH-LOGICAL-c4437-fe15157bb4b564a76bacd94bc949babc498a5899b667262bb0f1e081d9b7593f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201101787$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201101787$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22378567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muro, Eleonora</creatorcontrib><creatorcontrib>Fragola, Alexandra</creatorcontrib><creatorcontrib>Pons, Thomas</creatorcontrib><creatorcontrib>Lequeux, Nicolas</creatorcontrib><creatorcontrib>Ioannou, Andriani</creatorcontrib><creatorcontrib>Skourides, Paris</creatorcontrib><creatorcontrib>Dubertret, Benoit</creatorcontrib><title>Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid‐sulfobetaine (DHLA‐SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA‐SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin‐conjugated QDs, which may be due to the smaller size of DHLA‐SB QDs and/or to their superior intracellular stability.
Quantum dots (QDs) solubilized with the zwitterionic ligand dihydrolipoic acid‐sulfobetaine present excellent in vivo stability when introduced into cultured cells and embryos. This intracellular stability is much higher than with other QD surface chemistries. When conjugated to streptavidin, these zwitterionic QDs can label an intracellular target with great specificity, higher than commercial streptavidin QDs.</description><subject>Agglomeration</subject><subject>Animals</subject><subject>Betaine - analogs & derivatives</subject><subject>Betaine - chemistry</subject><subject>Compartments</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Electroporation</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>intracellular stability</subject><subject>Ligands</subject><subject>living cells</subject><subject>Marking</subject><subject>Microinjections</subject><subject>Nanotechnology</subject><subject>Quantum Dots</subject><subject>specific staining</subject><subject>Stability</subject><subject>sulfobetaine</subject><subject>Surface chemistry</subject><subject>Thioctic Acid - analogs & derivatives</subject><subject>Thioctic Acid - chemistry</subject><subject>Xenopus laevis</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURiMEakvbLUtkiQVsMvg6iR9LGmipFKiqadWlZWecjksegx-U-fc4mjJCLGBlyzrfsa-_LHsFeAEYk_d-6PsFwQAYGGfPsiOgUOSUE_F8vwd8mL30_gHjAkjJDrJDQgrGK8qOsm09DRvl7HiPLsfgVGv6PvbKoWVQ2vY2bJEaV-hGuXsTZmrq0DL23aRNUHY06DqqMcQBfZyCR482rNFVWJuUj65LNlSvzWB9cNZ4ZEfU2B_pLF3iT7IXneq9OX1aj7Pb80839ee8ubq4rD80eVuWBcs7AxVUTOtSV7RUjGrVrkSpW1EKrXRbCq4qLoSmlBFKtMYdGMxhJTSrRNEVx9nbnXfjpu_R-CDTe-Yx1Wim6KWYP4hxXCXy3T9J4EVFgRCgCX3zF_owRTemORIFIvkIsEQtdlTrJu-d6eTG2UG5rQQs5_rkXJ_c15cCr5-0UQ9mtcd_95UAsQMebW-2_9HJ5Zem-VOe77KpDvNzn1Xum0xmVsm7rxeS3p1xsazP5XXxC-LttpU</recordid><startdate>20120410</startdate><enddate>20120410</enddate><creator>Muro, Eleonora</creator><creator>Fragola, Alexandra</creator><creator>Pons, Thomas</creator><creator>Lequeux, Nicolas</creator><creator>Ioannou, Andriani</creator><creator>Skourides, Paris</creator><creator>Dubertret, Benoit</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20120410</creationdate><title>Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells</title><author>Muro, Eleonora ; Fragola, Alexandra ; Pons, Thomas ; Lequeux, Nicolas ; Ioannou, Andriani ; Skourides, Paris ; Dubertret, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-fe15157bb4b564a76bacd94bc949babc498a5899b667262bb0f1e081d9b7593f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agglomeration</topic><topic>Animals</topic><topic>Betaine - analogs & derivatives</topic><topic>Betaine - chemistry</topic><topic>Compartments</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Electroporation</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>intracellular stability</topic><topic>Ligands</topic><topic>living cells</topic><topic>Marking</topic><topic>Microinjections</topic><topic>Nanotechnology</topic><topic>Quantum Dots</topic><topic>specific staining</topic><topic>Stability</topic><topic>sulfobetaine</topic><topic>Surface chemistry</topic><topic>Thioctic Acid - analogs & derivatives</topic><topic>Thioctic Acid - chemistry</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muro, Eleonora</creatorcontrib><creatorcontrib>Fragola, Alexandra</creatorcontrib><creatorcontrib>Pons, Thomas</creatorcontrib><creatorcontrib>Lequeux, Nicolas</creatorcontrib><creatorcontrib>Ioannou, Andriani</creatorcontrib><creatorcontrib>Skourides, Paris</creatorcontrib><creatorcontrib>Dubertret, Benoit</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muro, Eleonora</au><au>Fragola, Alexandra</au><au>Pons, Thomas</au><au>Lequeux, Nicolas</au><au>Ioannou, Andriani</au><au>Skourides, Paris</au><au>Dubertret, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2012-04-10</date><risdate>2012</risdate><volume>8</volume><issue>7</issue><spage>1029</spage><epage>1037</epage><pages>1029-1037</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid‐sulfobetaine (DHLA‐SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA‐SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin‐conjugated QDs, which may be due to the smaller size of DHLA‐SB QDs and/or to their superior intracellular stability.
Quantum dots (QDs) solubilized with the zwitterionic ligand dihydrolipoic acid‐sulfobetaine present excellent in vivo stability when introduced into cultured cells and embryos. This intracellular stability is much higher than with other QD surface chemistries. When conjugated to streptavidin, these zwitterionic QDs can label an intracellular target with great specificity, higher than commercial streptavidin QDs.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22378567</pmid><doi>10.1002/smll.201101787</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2012-04, Vol.8 (7), p.1029-1037 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_968107805 |
source | MEDLINE; Wiley Journals |
subjects | Agglomeration Animals Betaine - analogs & derivatives Betaine - chemistry Compartments Cytoplasm Cytoplasm - metabolism Electroporation Embryo, Nonmammalian - metabolism HeLa Cells Humans intracellular stability Ligands living cells Marking Microinjections Nanotechnology Quantum Dots specific staining Stability sulfobetaine Surface chemistry Thioctic Acid - analogs & derivatives Thioctic Acid - chemistry Xenopus laevis |
title | Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Intracellular%20Stability%20and%20Targeting%20of%20Sulfobetaine%20Quantum%20Dots%20with%20Other%20Surface%20Chemistries%20in%20Live%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Muro,%20Eleonora&rft.date=2012-04-10&rft.volume=8&rft.issue=7&rft.spage=1029&rft.epage=1037&rft.pages=1029-1037&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201101787&rft_dat=%3Cproquest_cross%3E1835612216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819078217&rft_id=info:pmid/22378567&rfr_iscdi=true |