Profiling protease activities by dynamic proteomics workflows

Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2012-02, Vol.12 (4-5), p.587-596
Hauptverfasser: Klingler, Diana, Hardt, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 4-5
container_start_page 587
container_title Proteomics (Weinheim)
container_volume 12
creator Klingler, Diana
Hardt, Markus
description Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify endogenous substrates and cleavage products as well as protease activators and inhibitors. The complexity of these proteolytic networks presents a considerable analytic challenge. To comprehensively characterize these systems, quantitative methods that capture the spatial and temporal distributions of the network members are needed. Recently, activity‐based workflows have come to the forefront to tackle the dynamic aspects of proteolytic processing networks in vitro, ex vivo and in vivo. In this review, we will discuss how mass spectrometry‐based approaches can be used to gain new insights into protease biology by determining substrate specificities, profiling the activity‐states of proteases, monitoring proteolysis in vivo, measuring reaction kinetics and defining in vitro and in vivo proteolytic events. In addition, examples of future aspects of protease research that go beyond mass spectrometry‐based applications are given.
doi_str_mv 10.1002/pmic.201100399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968105013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968105013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5139-55813eb6e55537cd175c335009b507d8f280ab9227f60b8540d7f184dca8ac593</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS1ERdvAlSNaCVXlssFjZ_xx4FBF0FYKJRJFHC2v14vcbnaDvSHkv8fVpgFxgJPHmt-befYj5CXQKVDK3q5XwU0ZhXzhWj8hJyAAS60EPD3UyI_JaUp3lIJUWj4jx4yxmVACT8i7Zeyb0IbuW7GO_eBt8oV1Q_gRhuBTUe2KetfZvGRs97lKxbaP903bb9NzctTYNvkX-3NCvnx4fzu_KhefLq_nF4vSIXBdIirgvhIeEbl0NUh0nCOlukIqa9UwRW2lGZONoJXCGa1lA2pWO6usQ80n5Hycm0183_g0mFVIzret7Xy_SUYLBRQp8Ey--ScJyLRmXAPL6Ou_0Lt-E7v8jkyBYoLRbHtCpiPlYp9S9I1Zx7CycWeAmocIzEME5hBBFrzaj91UK18f8Mc_z8DZHrDJ2baJtnMh_eYQJQelMqdHbhtav_vPWrP8eD3_00Q5akMa_M-D1sZ7IySXaL7eXJrF1fKzmutbc8N_AdKkrPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518262081</pqid></control><display><type>article</type><title>Profiling protease activities by dynamic proteomics workflows</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Klingler, Diana ; Hardt, Markus</creator><creatorcontrib>Klingler, Diana ; Hardt, Markus</creatorcontrib><description>Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify endogenous substrates and cleavage products as well as protease activators and inhibitors. The complexity of these proteolytic networks presents a considerable analytic challenge. To comprehensively characterize these systems, quantitative methods that capture the spatial and temporal distributions of the network members are needed. Recently, activity‐based workflows have come to the forefront to tackle the dynamic aspects of proteolytic processing networks in vitro, ex vivo and in vivo. In this review, we will discuss how mass spectrometry‐based approaches can be used to gain new insights into protease biology by determining substrate specificities, profiling the activity‐states of proteases, monitoring proteolysis in vivo, measuring reaction kinetics and defining in vitro and in vivo proteolytic events. In addition, examples of future aspects of protease research that go beyond mass spectrometry‐based applications are given.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201100399</identifier><identifier>PMID: 22246865</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Dynamic proteomics ; Fundamental and applied biological sciences. Psychology ; Humans ; Kinetics ; Mass spectrometry ; Mass Spectrometry - methods ; Miscellaneous ; Peptide Hydrolases - chemistry ; Peptide Hydrolases - metabolism ; Protease Inhibitors - pharmacology ; Proteases ; Proteins ; Proteolysis ; Proteolytic networks ; Proteomics ; Proteomics - methods ; Stable isotope labeling ; Substrate Specificity ; Systems biology</subject><ispartof>Proteomics (Weinheim), 2012-02, Vol.12 (4-5), p.587-596</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5139-55813eb6e55537cd175c335009b507d8f280ab9227f60b8540d7f184dca8ac593</citedby><cites>FETCH-LOGICAL-c5139-55813eb6e55537cd175c335009b507d8f280ab9227f60b8540d7f184dca8ac593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201100399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201100399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25573188$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22246865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klingler, Diana</creatorcontrib><creatorcontrib>Hardt, Markus</creatorcontrib><title>Profiling protease activities by dynamic proteomics workflows</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify endogenous substrates and cleavage products as well as protease activators and inhibitors. The complexity of these proteolytic networks presents a considerable analytic challenge. To comprehensively characterize these systems, quantitative methods that capture the spatial and temporal distributions of the network members are needed. Recently, activity‐based workflows have come to the forefront to tackle the dynamic aspects of proteolytic processing networks in vitro, ex vivo and in vivo. In this review, we will discuss how mass spectrometry‐based approaches can be used to gain new insights into protease biology by determining substrate specificities, profiling the activity‐states of proteases, monitoring proteolysis in vivo, measuring reaction kinetics and defining in vitro and in vivo proteolytic events. In addition, examples of future aspects of protease research that go beyond mass spectrometry‐based applications are given.</description><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Dynamic proteomics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Miscellaneous</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protease Inhibitors - pharmacology</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteolytic networks</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Stable isotope labeling</subject><subject>Substrate Specificity</subject><subject>Systems biology</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS1ERdvAlSNaCVXlssFjZ_xx4FBF0FYKJRJFHC2v14vcbnaDvSHkv8fVpgFxgJPHmt-befYj5CXQKVDK3q5XwU0ZhXzhWj8hJyAAS60EPD3UyI_JaUp3lIJUWj4jx4yxmVACT8i7Zeyb0IbuW7GO_eBt8oV1Q_gRhuBTUe2KetfZvGRs97lKxbaP903bb9NzctTYNvkX-3NCvnx4fzu_KhefLq_nF4vSIXBdIirgvhIeEbl0NUh0nCOlukIqa9UwRW2lGZONoJXCGa1lA2pWO6usQ80n5Hycm0183_g0mFVIzret7Xy_SUYLBRQp8Ey--ScJyLRmXAPL6Ou_0Lt-E7v8jkyBYoLRbHtCpiPlYp9S9I1Zx7CycWeAmocIzEME5hBBFrzaj91UK18f8Mc_z8DZHrDJ2baJtnMh_eYQJQelMqdHbhtav_vPWrP8eD3_00Q5akMa_M-D1sZ7IySXaL7eXJrF1fKzmutbc8N_AdKkrPQ</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Klingler, Diana</creator><creator>Hardt, Markus</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Profiling protease activities by dynamic proteomics workflows</title><author>Klingler, Diana ; Hardt, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5139-55813eb6e55537cd175c335009b507d8f280ab9227f60b8540d7f184dca8ac593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Dynamic proteomics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Miscellaneous</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protease Inhibitors - pharmacology</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteolytic networks</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Stable isotope labeling</topic><topic>Substrate Specificity</topic><topic>Systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klingler, Diana</creatorcontrib><creatorcontrib>Hardt, Markus</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klingler, Diana</au><au>Hardt, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profiling protease activities by dynamic proteomics workflows</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2012-02</date><risdate>2012</risdate><volume>12</volume><issue>4-5</issue><spage>587</spage><epage>596</epage><pages>587-596</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify endogenous substrates and cleavage products as well as protease activators and inhibitors. The complexity of these proteolytic networks presents a considerable analytic challenge. To comprehensively characterize these systems, quantitative methods that capture the spatial and temporal distributions of the network members are needed. Recently, activity‐based workflows have come to the forefront to tackle the dynamic aspects of proteolytic processing networks in vitro, ex vivo and in vivo. In this review, we will discuss how mass spectrometry‐based approaches can be used to gain new insights into protease biology by determining substrate specificities, profiling the activity‐states of proteases, monitoring proteolysis in vivo, measuring reaction kinetics and defining in vitro and in vivo proteolytic events. In addition, examples of future aspects of protease research that go beyond mass spectrometry‐based applications are given.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22246865</pmid><doi>10.1002/pmic.201100399</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2012-02, Vol.12 (4-5), p.587-596
issn 1615-9853
1615-9861
language eng
recordid cdi_proquest_miscellaneous_968105013
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Sequence
Analytical, structural and metabolic biochemistry
Biological and medical sciences
Dynamic proteomics
Fundamental and applied biological sciences. Psychology
Humans
Kinetics
Mass spectrometry
Mass Spectrometry - methods
Miscellaneous
Peptide Hydrolases - chemistry
Peptide Hydrolases - metabolism
Protease Inhibitors - pharmacology
Proteases
Proteins
Proteolysis
Proteolytic networks
Proteomics
Proteomics - methods
Stable isotope labeling
Substrate Specificity
Systems biology
title Profiling protease activities by dynamic proteomics workflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profiling%20protease%20activities%20by%20dynamic%20proteomics%20workflows&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Klingler,%20Diana&rft.date=2012-02&rft.volume=12&rft.issue=4-5&rft.spage=587&rft.epage=596&rft.pages=587-596&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201100399&rft_dat=%3Cproquest_cross%3E968105013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518262081&rft_id=info:pmid/22246865&rfr_iscdi=true