Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface

Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene–water interface was studied with two lipophilic electron donors of similar driving force, 1,1′-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-04, Vol.134 (13), p.5974-5984
Hauptverfasser: Peljo, Pekka, Murtomäki, Lasse, Kallio, Tanja, Xu, Hai-Jun, Meyer, Michel, Gros, Claude P., Barbe, Jean-Michel, Girault, Hubert H., Laasonen, Kari, Kontturi, Kyösti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5984
container_issue 13
container_start_page 5974
container_title Journal of the American Chemical Society
container_volume 134
creator Peljo, Pekka
Murtomäki, Lasse
Kallio, Tanja
Xu, Hai-Jun
Meyer, Michel
Gros, Claude P.
Barbe, Jean-Michel
Girault, Hubert H.
Laasonen, Kari
Kontturi, Kyösti
description Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene–water interface was studied with two lipophilic electron donors of similar driving force, 1,1′-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but the mediator has a significant effect on the selectivity, as DMFc and the porphyrins themselves catalyze the decomposition and the further reduction of hydrogen peroxide. Density functional theory calculations indicate that the biscobaltporphyrin, 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene, Co2(DPX), actually catalyzes oxygen reduction to hydrogen peroxide when oxygen is bound on the “exo” side (“dock-on”) of the catalyst, while four-electron reduction takes place with oxygen bound on the “endo” side (“dock-in”) of the molecule. These results can be explained by a “dock-on/dock-in” mechanism. The next step for improving bioinspired oxygen reduction catalysts would be blocking the “dock-on” path to achieve selective four-electron reduction of molecular oxygen.
doi_str_mv 10.1021/ja3004914
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968102509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968102509</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-56cbefabead0053d2152e7139cddd1f5da90e348472c1e6d25b4a480709798593</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AeQNwixCIwdO48lVDwqVSogWEeO7YCrJG7tRCI7_oE_5EtIldIVq7kjHV3NHIROCVwRoOR6KUIAlhK2h8aEUwg4odE-GgMADeIkCkfoyPtlvzKakEM0opRRiBkfo-dbYytT6cZIvPjs3nWNX7RqZWNsjfMOT20hpBElfrJu9dE5U3ssGizw3Kxbo36-voeAZ3WjXc_qY3RQiNLrk-2coLf7u9fpYzBfPMymN_NAMMKbgEcy14XItVAAPFS0P1zHJEylUooUXIkUdMgSFlNJdKQoz5lgCcSQxmnC03CCLobelbPrVvsmq4yXuixFrW3rszRKejkcNuTlQEpnvXe6yFbOVMJ1GYFsIzDbCezZs21rm1da7cg_Yz1wPgBC-mxpW1f3T_5T9AsUIXbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>968102509</pqid></control><display><type>article</type><title>Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Peljo, Pekka ; Murtomäki, Lasse ; Kallio, Tanja ; Xu, Hai-Jun ; Meyer, Michel ; Gros, Claude P. ; Barbe, Jean-Michel ; Girault, Hubert H. ; Laasonen, Kari ; Kontturi, Kyösti</creator><creatorcontrib>Peljo, Pekka ; Murtomäki, Lasse ; Kallio, Tanja ; Xu, Hai-Jun ; Meyer, Michel ; Gros, Claude P. ; Barbe, Jean-Michel ; Girault, Hubert H. ; Laasonen, Kari ; Kontturi, Kyösti</creatorcontrib><description>Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene–water interface was studied with two lipophilic electron donors of similar driving force, 1,1′-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but the mediator has a significant effect on the selectivity, as DMFc and the porphyrins themselves catalyze the decomposition and the further reduction of hydrogen peroxide. Density functional theory calculations indicate that the biscobaltporphyrin, 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene, Co2(DPX), actually catalyzes oxygen reduction to hydrogen peroxide when oxygen is bound on the “exo” side (“dock-on”) of the catalyst, while four-electron reduction takes place with oxygen bound on the “endo” side (“dock-in”) of the molecule. These results can be explained by a “dock-on/dock-in” mechanism. The next step for improving bioinspired oxygen reduction catalysts would be blocking the “dock-on” path to achieve selective four-electron reduction of molecular oxygen.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja3004914</identifier><identifier>PMID: 22420745</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetics - methods ; Electrodes ; Electron Transport ; Ferrous Compounds - chemistry ; Heterocyclic Compounds - chemistry ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Conformation ; Oxygen - chemistry ; Porphyrins - chemistry ; Quantum Theory</subject><ispartof>Journal of the American Chemical Society, 2012-04, Vol.134 (13), p.5974-5984</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-56cbefabead0053d2152e7139cddd1f5da90e348472c1e6d25b4a480709798593</citedby><cites>FETCH-LOGICAL-a415t-56cbefabead0053d2152e7139cddd1f5da90e348472c1e6d25b4a480709798593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja3004914$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja3004914$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22420745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peljo, Pekka</creatorcontrib><creatorcontrib>Murtomäki, Lasse</creatorcontrib><creatorcontrib>Kallio, Tanja</creatorcontrib><creatorcontrib>Xu, Hai-Jun</creatorcontrib><creatorcontrib>Meyer, Michel</creatorcontrib><creatorcontrib>Gros, Claude P.</creatorcontrib><creatorcontrib>Barbe, Jean-Michel</creatorcontrib><creatorcontrib>Girault, Hubert H.</creatorcontrib><creatorcontrib>Laasonen, Kari</creatorcontrib><creatorcontrib>Kontturi, Kyösti</creatorcontrib><title>Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene–water interface was studied with two lipophilic electron donors of similar driving force, 1,1′-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but the mediator has a significant effect on the selectivity, as DMFc and the porphyrins themselves catalyze the decomposition and the further reduction of hydrogen peroxide. Density functional theory calculations indicate that the biscobaltporphyrin, 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene, Co2(DPX), actually catalyzes oxygen reduction to hydrogen peroxide when oxygen is bound on the “exo” side (“dock-on”) of the catalyst, while four-electron reduction takes place with oxygen bound on the “endo” side (“dock-in”) of the molecule. These results can be explained by a “dock-on/dock-in” mechanism. The next step for improving bioinspired oxygen reduction catalysts would be blocking the “dock-on” path to achieve selective four-electron reduction of molecular oxygen.</description><subject>Biomimetics - methods</subject><subject>Electrodes</subject><subject>Electron Transport</subject><subject>Ferrous Compounds - chemistry</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Oxygen - chemistry</subject><subject>Porphyrins - chemistry</subject><subject>Quantum Theory</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AeQNwixCIwdO48lVDwqVSogWEeO7YCrJG7tRCI7_oE_5EtIldIVq7kjHV3NHIROCVwRoOR6KUIAlhK2h8aEUwg4odE-GgMADeIkCkfoyPtlvzKakEM0opRRiBkfo-dbYytT6cZIvPjs3nWNX7RqZWNsjfMOT20hpBElfrJu9dE5U3ssGizw3Kxbo36-voeAZ3WjXc_qY3RQiNLrk-2coLf7u9fpYzBfPMymN_NAMMKbgEcy14XItVAAPFS0P1zHJEylUooUXIkUdMgSFlNJdKQoz5lgCcSQxmnC03CCLobelbPrVvsmq4yXuixFrW3rszRKejkcNuTlQEpnvXe6yFbOVMJ1GYFsIzDbCezZs21rm1da7cg_Yz1wPgBC-mxpW1f3T_5T9AsUIXbU</recordid><startdate>20120404</startdate><enddate>20120404</enddate><creator>Peljo, Pekka</creator><creator>Murtomäki, Lasse</creator><creator>Kallio, Tanja</creator><creator>Xu, Hai-Jun</creator><creator>Meyer, Michel</creator><creator>Gros, Claude P.</creator><creator>Barbe, Jean-Michel</creator><creator>Girault, Hubert H.</creator><creator>Laasonen, Kari</creator><creator>Kontturi, Kyösti</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120404</creationdate><title>Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface</title><author>Peljo, Pekka ; Murtomäki, Lasse ; Kallio, Tanja ; Xu, Hai-Jun ; Meyer, Michel ; Gros, Claude P. ; Barbe, Jean-Michel ; Girault, Hubert H. ; Laasonen, Kari ; Kontturi, Kyösti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-56cbefabead0053d2152e7139cddd1f5da90e348472c1e6d25b4a480709798593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomimetics - methods</topic><topic>Electrodes</topic><topic>Electron Transport</topic><topic>Ferrous Compounds - chemistry</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Oxygen - chemistry</topic><topic>Porphyrins - chemistry</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peljo, Pekka</creatorcontrib><creatorcontrib>Murtomäki, Lasse</creatorcontrib><creatorcontrib>Kallio, Tanja</creatorcontrib><creatorcontrib>Xu, Hai-Jun</creatorcontrib><creatorcontrib>Meyer, Michel</creatorcontrib><creatorcontrib>Gros, Claude P.</creatorcontrib><creatorcontrib>Barbe, Jean-Michel</creatorcontrib><creatorcontrib>Girault, Hubert H.</creatorcontrib><creatorcontrib>Laasonen, Kari</creatorcontrib><creatorcontrib>Kontturi, Kyösti</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peljo, Pekka</au><au>Murtomäki, Lasse</au><au>Kallio, Tanja</au><au>Xu, Hai-Jun</au><au>Meyer, Michel</au><au>Gros, Claude P.</au><au>Barbe, Jean-Michel</au><au>Girault, Hubert H.</au><au>Laasonen, Kari</au><au>Kontturi, Kyösti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-04-04</date><risdate>2012</risdate><volume>134</volume><issue>13</issue><spage>5974</spage><epage>5984</epage><pages>5974-5984</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene–water interface was studied with two lipophilic electron donors of similar driving force, 1,1′-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but the mediator has a significant effect on the selectivity, as DMFc and the porphyrins themselves catalyze the decomposition and the further reduction of hydrogen peroxide. Density functional theory calculations indicate that the biscobaltporphyrin, 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene, Co2(DPX), actually catalyzes oxygen reduction to hydrogen peroxide when oxygen is bound on the “exo” side (“dock-on”) of the catalyst, while four-electron reduction takes place with oxygen bound on the “endo” side (“dock-in”) of the molecule. These results can be explained by a “dock-on/dock-in” mechanism. The next step for improving bioinspired oxygen reduction catalysts would be blocking the “dock-on” path to achieve selective four-electron reduction of molecular oxygen.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22420745</pmid><doi>10.1021/ja3004914</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-04, Vol.134 (13), p.5974-5984
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_968102509
source MEDLINE; American Chemical Society Journals
subjects Biomimetics - methods
Electrodes
Electron Transport
Ferrous Compounds - chemistry
Heterocyclic Compounds - chemistry
Hydrophobic and Hydrophilic Interactions
Models, Molecular
Molecular Conformation
Oxygen - chemistry
Porphyrins - chemistry
Quantum Theory
title Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Oxygen%20Reduction%20by%20Cofacial%20Porphyrins%20at%20a%20Liquid%E2%80%93Liquid%20Interface&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Peljo,%20Pekka&rft.date=2012-04-04&rft.volume=134&rft.issue=13&rft.spage=5974&rft.epage=5984&rft.pages=5974-5984&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja3004914&rft_dat=%3Cproquest_cross%3E968102509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=968102509&rft_id=info:pmid/22420745&rfr_iscdi=true