A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors

A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2012-04, Vol.84 (7), p.3125-3131
Hauptverfasser: Vogel, Robert, Anderson, Will, Eldridge, James, Glossop, Ben, Willmott, Geoff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3131
container_issue 7
container_start_page 3125
container_title Analytical chemistry (Washington)
container_volume 84
creator Vogel, Robert
Anderson, Will
Eldridge, James
Glossop, Ben
Willmott, Geoff
description A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.
doi_str_mv 10.1021/ac2030915
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_964198675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>964198675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</originalsourceid><addsrcrecordid>eNpd0EtLw0AUBeBBFK3VhX9AAiLiIjqPZJJZluILqhZqXQnhdnJjU9JMnUkW-uud2lqlq9l8nHvmEHLC6BWjnF2D5lRQxeId0mExp6FMU75LOpRSEfKE0gNy6NyMUsYok_vkgHMhlUx4h7z1glewJUwqDIYWnWstBo_YTE0eFMYG_SlY0A3a8qus34MnqM0CbFNq70etLUDjj3nHYOyWYmh8wAhrZ6w7InsFVA6P12-XjG9vXvr34eD57qHfG4QQibQJOXIFlMfIpNAUJzkqViScRbkE31NgikJgzESkkEuJuUwBkCNTEVOca9ElF6vchTUfLbomm5dOY1VBjaZ1mZIepjKJvTzbkjPT2tqXy5hfK4popKRXlyulrXHOYpEtbDkH--lRtlw82yzu7ek6sZ3MMd_I34k9OF8DcBqqwkKtS_fn4iQRsf_cxoF2_1ttH_wGqj2R1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000440496</pqid></control><display><type>article</type><title>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</title><source>ACS Publications</source><source>MEDLINE</source><creator>Vogel, Robert ; Anderson, Will ; Eldridge, James ; Glossop, Ben ; Willmott, Geoff</creator><creatorcontrib>Vogel, Robert ; Anderson, Will ; Eldridge, James ; Glossop, Ben ; Willmott, Geoff</creatorcontrib><description>A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac2030915</identifier><identifier>PMID: 22369672</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Carboxylic Acids - chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Electric Impedance ; Electrochemical methods ; Electrochemistry - instrumentation ; Exact sciences and technology ; General, instrumentation ; Measurement ; Nanoparticles ; Nanoparticles - chemistry ; Other chromatographic methods ; Polystyrene ; Polystyrenes - chemistry ; Porosity ; Pressure ; Sensors ; Surface Properties</subject><ispartof>Analytical chemistry (Washington), 2012-04, Vol.84 (7), p.3125-3131</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 3, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</citedby><cites>FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac2030915$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac2030915$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25773551$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22369672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, Robert</creatorcontrib><creatorcontrib>Anderson, Will</creatorcontrib><creatorcontrib>Eldridge, James</creatorcontrib><creatorcontrib>Glossop, Ben</creatorcontrib><creatorcontrib>Willmott, Geoff</creatorcontrib><title>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.</description><subject>Analytical chemistry</subject><subject>Carboxylic Acids - chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Electric Impedance</subject><subject>Electrochemical methods</subject><subject>Electrochemistry - instrumentation</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Measurement</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Other chromatographic methods</subject><subject>Polystyrene</subject><subject>Polystyrenes - chemistry</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Sensors</subject><subject>Surface Properties</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0EtLw0AUBeBBFK3VhX9AAiLiIjqPZJJZluILqhZqXQnhdnJjU9JMnUkW-uud2lqlq9l8nHvmEHLC6BWjnF2D5lRQxeId0mExp6FMU75LOpRSEfKE0gNy6NyMUsYok_vkgHMhlUx4h7z1glewJUwqDIYWnWstBo_YTE0eFMYG_SlY0A3a8qus34MnqM0CbFNq70etLUDjj3nHYOyWYmh8wAhrZ6w7InsFVA6P12-XjG9vXvr34eD57qHfG4QQibQJOXIFlMfIpNAUJzkqViScRbkE31NgikJgzESkkEuJuUwBkCNTEVOca9ElF6vchTUfLbomm5dOY1VBjaZ1mZIepjKJvTzbkjPT2tqXy5hfK4popKRXlyulrXHOYpEtbDkH--lRtlw82yzu7ek6sZ3MMd_I34k9OF8DcBqqwkKtS_fn4iQRsf_cxoF2_1ttH_wGqj2R1Q</recordid><startdate>20120403</startdate><enddate>20120403</enddate><creator>Vogel, Robert</creator><creator>Anderson, Will</creator><creator>Eldridge, James</creator><creator>Glossop, Ben</creator><creator>Willmott, Geoff</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120403</creationdate><title>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</title><author>Vogel, Robert ; Anderson, Will ; Eldridge, James ; Glossop, Ben ; Willmott, Geoff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical chemistry</topic><topic>Carboxylic Acids - chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Electric Impedance</topic><topic>Electrochemical methods</topic><topic>Electrochemistry - instrumentation</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Measurement</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Other chromatographic methods</topic><topic>Polystyrene</topic><topic>Polystyrenes - chemistry</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Sensors</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Robert</creatorcontrib><creatorcontrib>Anderson, Will</creatorcontrib><creatorcontrib>Eldridge, James</creatorcontrib><creatorcontrib>Glossop, Ben</creatorcontrib><creatorcontrib>Willmott, Geoff</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Robert</au><au>Anderson, Will</au><au>Eldridge, James</au><au>Glossop, Ben</au><au>Willmott, Geoff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2012-04-03</date><risdate>2012</risdate><volume>84</volume><issue>7</issue><spage>3125</spage><epage>3131</epage><pages>3125-3131</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22369672</pmid><doi>10.1021/ac2030915</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2012-04, Vol.84 (7), p.3125-3131
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_964198675
source ACS Publications; MEDLINE
subjects Analytical chemistry
Carboxylic Acids - chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Electric Impedance
Electrochemical methods
Electrochemistry - instrumentation
Exact sciences and technology
General, instrumentation
Measurement
Nanoparticles
Nanoparticles - chemistry
Other chromatographic methods
Polystyrene
Polystyrenes - chemistry
Porosity
Pressure
Sensors
Surface Properties
title A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variable%20Pressure%20Method%20for%20Characterizing%20Nanoparticle%20Surface%20Charge%20Using%20Pore%20Sensors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vogel,%20Robert&rft.date=2012-04-03&rft.volume=84&rft.issue=7&rft.spage=3125&rft.epage=3131&rft.pages=3125-3131&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac2030915&rft_dat=%3Cproquest_cross%3E964198675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000440496&rft_id=info:pmid/22369672&rfr_iscdi=true