A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors
A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes tran...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2012-04, Vol.84 (7), p.3125-3131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3131 |
---|---|
container_issue | 7 |
container_start_page | 3125 |
container_title | Analytical chemistry (Washington) |
container_volume | 84 |
creator | Vogel, Robert Anderson, Will Eldridge, James Glossop, Ben Willmott, Geoff |
description | A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration. |
doi_str_mv | 10.1021/ac2030915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_964198675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>964198675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</originalsourceid><addsrcrecordid>eNpd0EtLw0AUBeBBFK3VhX9AAiLiIjqPZJJZluILqhZqXQnhdnJjU9JMnUkW-uud2lqlq9l8nHvmEHLC6BWjnF2D5lRQxeId0mExp6FMU75LOpRSEfKE0gNy6NyMUsYok_vkgHMhlUx4h7z1glewJUwqDIYWnWstBo_YTE0eFMYG_SlY0A3a8qus34MnqM0CbFNq70etLUDjj3nHYOyWYmh8wAhrZ6w7InsFVA6P12-XjG9vXvr34eD57qHfG4QQibQJOXIFlMfIpNAUJzkqViScRbkE31NgikJgzESkkEuJuUwBkCNTEVOca9ElF6vchTUfLbomm5dOY1VBjaZ1mZIepjKJvTzbkjPT2tqXy5hfK4popKRXlyulrXHOYpEtbDkH--lRtlw82yzu7ek6sZ3MMd_I34k9OF8DcBqqwkKtS_fn4iQRsf_cxoF2_1ttH_wGqj2R1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000440496</pqid></control><display><type>article</type><title>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</title><source>ACS Publications</source><source>MEDLINE</source><creator>Vogel, Robert ; Anderson, Will ; Eldridge, James ; Glossop, Ben ; Willmott, Geoff</creator><creatorcontrib>Vogel, Robert ; Anderson, Will ; Eldridge, James ; Glossop, Ben ; Willmott, Geoff</creatorcontrib><description>A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac2030915</identifier><identifier>PMID: 22369672</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Carboxylic Acids - chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Electric Impedance ; Electrochemical methods ; Electrochemistry - instrumentation ; Exact sciences and technology ; General, instrumentation ; Measurement ; Nanoparticles ; Nanoparticles - chemistry ; Other chromatographic methods ; Polystyrene ; Polystyrenes - chemistry ; Porosity ; Pressure ; Sensors ; Surface Properties</subject><ispartof>Analytical chemistry (Washington), 2012-04, Vol.84 (7), p.3125-3131</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 3, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</citedby><cites>FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac2030915$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac2030915$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25773551$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22369672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, Robert</creatorcontrib><creatorcontrib>Anderson, Will</creatorcontrib><creatorcontrib>Eldridge, James</creatorcontrib><creatorcontrib>Glossop, Ben</creatorcontrib><creatorcontrib>Willmott, Geoff</creatorcontrib><title>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.</description><subject>Analytical chemistry</subject><subject>Carboxylic Acids - chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Electric Impedance</subject><subject>Electrochemical methods</subject><subject>Electrochemistry - instrumentation</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Measurement</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Other chromatographic methods</subject><subject>Polystyrene</subject><subject>Polystyrenes - chemistry</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Sensors</subject><subject>Surface Properties</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0EtLw0AUBeBBFK3VhX9AAiLiIjqPZJJZluILqhZqXQnhdnJjU9JMnUkW-uud2lqlq9l8nHvmEHLC6BWjnF2D5lRQxeId0mExp6FMU75LOpRSEfKE0gNy6NyMUsYok_vkgHMhlUx4h7z1glewJUwqDIYWnWstBo_YTE0eFMYG_SlY0A3a8qus34MnqM0CbFNq70etLUDjj3nHYOyWYmh8wAhrZ6w7InsFVA6P12-XjG9vXvr34eD57qHfG4QQibQJOXIFlMfIpNAUJzkqViScRbkE31NgikJgzESkkEuJuUwBkCNTEVOca9ElF6vchTUfLbomm5dOY1VBjaZ1mZIepjKJvTzbkjPT2tqXy5hfK4popKRXlyulrXHOYpEtbDkH--lRtlw82yzu7ek6sZ3MMd_I34k9OF8DcBqqwkKtS_fn4iQRsf_cxoF2_1ttH_wGqj2R1Q</recordid><startdate>20120403</startdate><enddate>20120403</enddate><creator>Vogel, Robert</creator><creator>Anderson, Will</creator><creator>Eldridge, James</creator><creator>Glossop, Ben</creator><creator>Willmott, Geoff</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120403</creationdate><title>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</title><author>Vogel, Robert ; Anderson, Will ; Eldridge, James ; Glossop, Ben ; Willmott, Geoff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-2e29a025e163c0ebde91f7214d6a3693e8e33e51349e266ed68aae2e1941922c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical chemistry</topic><topic>Carboxylic Acids - chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Electric Impedance</topic><topic>Electrochemical methods</topic><topic>Electrochemistry - instrumentation</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Measurement</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Other chromatographic methods</topic><topic>Polystyrene</topic><topic>Polystyrenes - chemistry</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Sensors</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Robert</creatorcontrib><creatorcontrib>Anderson, Will</creatorcontrib><creatorcontrib>Eldridge, James</creatorcontrib><creatorcontrib>Glossop, Ben</creatorcontrib><creatorcontrib>Willmott, Geoff</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Robert</au><au>Anderson, Will</au><au>Eldridge, James</au><au>Glossop, Ben</au><au>Willmott, Geoff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2012-04-03</date><risdate>2012</risdate><volume>84</volume><issue>7</issue><spage>3125</spage><epage>3131</epage><pages>3125-3131</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22369672</pmid><doi>10.1021/ac2030915</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2012-04, Vol.84 (7), p.3125-3131 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_964198675 |
source | ACS Publications; MEDLINE |
subjects | Analytical chemistry Carboxylic Acids - chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Electric Impedance Electrochemical methods Electrochemistry - instrumentation Exact sciences and technology General, instrumentation Measurement Nanoparticles Nanoparticles - chemistry Other chromatographic methods Polystyrene Polystyrenes - chemistry Porosity Pressure Sensors Surface Properties |
title | A Variable Pressure Method for Characterizing Nanoparticle Surface Charge Using Pore Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variable%20Pressure%20Method%20for%20Characterizing%20Nanoparticle%20Surface%20Charge%20Using%20Pore%20Sensors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vogel,%20Robert&rft.date=2012-04-03&rft.volume=84&rft.issue=7&rft.spage=3125&rft.epage=3131&rft.pages=3125-3131&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac2030915&rft_dat=%3Cproquest_cross%3E964198675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000440496&rft_id=info:pmid/22369672&rfr_iscdi=true |