Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery

A novel, fibrous-structured bifunctional (magnetic and mesoporous) Fe3O4/silica microsphere was successfully synthesized through a simple and economical self-assembled process in which hydrophobic 9 nm-Fe3O4 nanocrystals were directly used without modifications. The obtained material is performed as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry 2011-01, Vol.21 (41), p.16420-16426
Hauptverfasser: Gai, Shili, Yang, Piaoping, Ma, Ping'an, Wang, Dong, Li, Chunxia, Li, Xingbo, Niu, Na, Lin, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16426
container_issue 41
container_start_page 16420
container_title Journal of materials chemistry
container_volume 21
creator Gai, Shili
Yang, Piaoping
Ma, Ping'an
Wang, Dong
Li, Chunxia
Li, Xingbo
Niu, Na
Lin, Jun
description A novel, fibrous-structured bifunctional (magnetic and mesoporous) Fe3O4/silica microsphere was successfully synthesized through a simple and economical self-assembled process in which hydrophobic 9 nm-Fe3O4 nanocrystals were directly used without modifications. The obtained material is performed as a drug delivery carrier to investigate the in vitro and intracellular delivery properties of doxorubicin hydrochloride (DOX). X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FT-IR), and superconducting quantum interference device (SQUID) were employed to characterize the composite. The results reveal that the novel composite exhibits typical mesoporous structure, narrow size distribution, good monodispersity, and superparamagnetic features. Notably, confocal laser scanning microscopy (CLSM) images indicate that the DOX-loaded sample could deliver DOX into the nuclei of HeLa cells to kill cells. Also, MTT assay confirms that the DOX-loaded sample leads to pronounced and efficient cytotoxic effects to L929 fibroblast cells, even similar to that of free DOX at high concentrations, whereas the pure material is non-toxic. Therefore, the novel material is expected to have potential application for targeted cancer therapy.
doi_str_mv 10.1039/c1jm13357h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963915195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963915195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-5bab75274e85a80a4def6e989c9b2e43b0082649159d2a224f08ead6933593363</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsFYv_gV7E4TY_Uyy3qQYFQq96DlsNhO7JV_uJMX-9yZW8DA8Bt4b5v0IueXsgTNpVo7vGy6lTnZnZMFlrCKtGT8nC2a0iYwS6SW5QtwzxnkS6wU5ZL4I3YgRDmF0wxigpI39bGHwjtp2WgC7vpstNAO5VSv0tXeWNt6FDvsdBMBHisd22AF6_M34dgjWQV2PtQ207L67MBbe-ZaWUPsDhOM1uahsjXDzp0vykT2_r1-jzfblbf20iZwUZoh0YYtEi0RBqm3KrCqhisGkxplCgJIFY6mIleHalMIKoSqWgi1jMyGYJpZLcne624fuawQc8sbj_JltYaqUm1hOYW705Lw_OedaGKDK--AbG445Z_nMNv9nK38AB-FvUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963915195</pqid></control><display><type>article</type><title>Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gai, Shili ; Yang, Piaoping ; Ma, Ping'an ; Wang, Dong ; Li, Chunxia ; Li, Xingbo ; Niu, Na ; Lin, Jun</creator><creatorcontrib>Gai, Shili ; Yang, Piaoping ; Ma, Ping'an ; Wang, Dong ; Li, Chunxia ; Li, Xingbo ; Niu, Na ; Lin, Jun</creatorcontrib><description>A novel, fibrous-structured bifunctional (magnetic and mesoporous) Fe3O4/silica microsphere was successfully synthesized through a simple and economical self-assembled process in which hydrophobic 9 nm-Fe3O4 nanocrystals were directly used without modifications. The obtained material is performed as a drug delivery carrier to investigate the in vitro and intracellular delivery properties of doxorubicin hydrochloride (DOX). X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FT-IR), and superconducting quantum interference device (SQUID) were employed to characterize the composite. The results reveal that the novel composite exhibits typical mesoporous structure, narrow size distribution, good monodispersity, and superparamagnetic features. Notably, confocal laser scanning microscopy (CLSM) images indicate that the DOX-loaded sample could deliver DOX into the nuclei of HeLa cells to kill cells. Also, MTT assay confirms that the DOX-loaded sample leads to pronounced and efficient cytotoxic effects to L929 fibroblast cells, even similar to that of free DOX at high concentrations, whereas the pure material is non-toxic. Therefore, the novel material is expected to have potential application for targeted cancer therapy.</description><identifier>ISSN: 0959-9428</identifier><identifier>EISSN: 1364-5501</identifier><identifier>DOI: 10.1039/c1jm13357h</identifier><language>eng</language><subject>Doxorubicin ; Economics ; Microspheres ; Scanning electron microscopy ; Silicon dioxide ; SQUIDs ; Superconducting quantum interference devices</subject><ispartof>Journal of materials chemistry, 2011-01, Vol.21 (41), p.16420-16426</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-5bab75274e85a80a4def6e989c9b2e43b0082649159d2a224f08ead6933593363</citedby><cites>FETCH-LOGICAL-c329t-5bab75274e85a80a4def6e989c9b2e43b0082649159d2a224f08ead6933593363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><creatorcontrib>Ma, Ping'an</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Li, Chunxia</creatorcontrib><creatorcontrib>Li, Xingbo</creatorcontrib><creatorcontrib>Niu, Na</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><title>Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery</title><title>Journal of materials chemistry</title><description>A novel, fibrous-structured bifunctional (magnetic and mesoporous) Fe3O4/silica microsphere was successfully synthesized through a simple and economical self-assembled process in which hydrophobic 9 nm-Fe3O4 nanocrystals were directly used without modifications. The obtained material is performed as a drug delivery carrier to investigate the in vitro and intracellular delivery properties of doxorubicin hydrochloride (DOX). X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FT-IR), and superconducting quantum interference device (SQUID) were employed to characterize the composite. The results reveal that the novel composite exhibits typical mesoporous structure, narrow size distribution, good monodispersity, and superparamagnetic features. Notably, confocal laser scanning microscopy (CLSM) images indicate that the DOX-loaded sample could deliver DOX into the nuclei of HeLa cells to kill cells. Also, MTT assay confirms that the DOX-loaded sample leads to pronounced and efficient cytotoxic effects to L929 fibroblast cells, even similar to that of free DOX at high concentrations, whereas the pure material is non-toxic. Therefore, the novel material is expected to have potential application for targeted cancer therapy.</description><subject>Doxorubicin</subject><subject>Economics</subject><subject>Microspheres</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>SQUIDs</subject><subject>Superconducting quantum interference devices</subject><issn>0959-9428</issn><issn>1364-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsFYv_gV7E4TY_Uyy3qQYFQq96DlsNhO7JV_uJMX-9yZW8DA8Bt4b5v0IueXsgTNpVo7vGy6lTnZnZMFlrCKtGT8nC2a0iYwS6SW5QtwzxnkS6wU5ZL4I3YgRDmF0wxigpI39bGHwjtp2WgC7vpstNAO5VSv0tXeWNt6FDvsdBMBHisd22AF6_M34dgjWQV2PtQ207L67MBbe-ZaWUPsDhOM1uahsjXDzp0vykT2_r1-jzfblbf20iZwUZoh0YYtEi0RBqm3KrCqhisGkxplCgJIFY6mIleHalMIKoSqWgi1jMyGYJpZLcne624fuawQc8sbj_JltYaqUm1hOYW705Lw_OedaGKDK--AbG445Z_nMNv9nK38AB-FvUA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Gai, Shili</creator><creator>Yang, Piaoping</creator><creator>Ma, Ping'an</creator><creator>Wang, Dong</creator><creator>Li, Chunxia</creator><creator>Li, Xingbo</creator><creator>Niu, Na</creator><creator>Lin, Jun</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110101</creationdate><title>Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery</title><author>Gai, Shili ; Yang, Piaoping ; Ma, Ping'an ; Wang, Dong ; Li, Chunxia ; Li, Xingbo ; Niu, Na ; Lin, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-5bab75274e85a80a4def6e989c9b2e43b0082649159d2a224f08ead6933593363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Doxorubicin</topic><topic>Economics</topic><topic>Microspheres</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>SQUIDs</topic><topic>Superconducting quantum interference devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><creatorcontrib>Ma, Ping'an</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Li, Chunxia</creatorcontrib><creatorcontrib>Li, Xingbo</creatorcontrib><creatorcontrib>Niu, Na</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gai, Shili</au><au>Yang, Piaoping</au><au>Ma, Ping'an</au><au>Wang, Dong</au><au>Li, Chunxia</au><au>Li, Xingbo</au><au>Niu, Na</au><au>Lin, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery</atitle><jtitle>Journal of materials chemistry</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>21</volume><issue>41</issue><spage>16420</spage><epage>16426</epage><pages>16420-16426</pages><issn>0959-9428</issn><eissn>1364-5501</eissn><abstract>A novel, fibrous-structured bifunctional (magnetic and mesoporous) Fe3O4/silica microsphere was successfully synthesized through a simple and economical self-assembled process in which hydrophobic 9 nm-Fe3O4 nanocrystals were directly used without modifications. The obtained material is performed as a drug delivery carrier to investigate the in vitro and intracellular delivery properties of doxorubicin hydrochloride (DOX). X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FT-IR), and superconducting quantum interference device (SQUID) were employed to characterize the composite. The results reveal that the novel composite exhibits typical mesoporous structure, narrow size distribution, good monodispersity, and superparamagnetic features. Notably, confocal laser scanning microscopy (CLSM) images indicate that the DOX-loaded sample could deliver DOX into the nuclei of HeLa cells to kill cells. Also, MTT assay confirms that the DOX-loaded sample leads to pronounced and efficient cytotoxic effects to L929 fibroblast cells, even similar to that of free DOX at high concentrations, whereas the pure material is non-toxic. Therefore, the novel material is expected to have potential application for targeted cancer therapy.</abstract><doi>10.1039/c1jm13357h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-9428
ispartof Journal of materials chemistry, 2011-01, Vol.21 (41), p.16420-16426
issn 0959-9428
1364-5501
language eng
recordid cdi_proquest_miscellaneous_963915195
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Doxorubicin
Economics
Microspheres
Scanning electron microscopy
Silicon dioxide
SQUIDs
Superconducting quantum interference devices
title Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrous-structured%20magnetic%20and%20mesoporous%20Fe3O4/silica%20microspheres:%20synthesis%20and%20intracellular%20doxorubicin%20delivery&rft.jtitle=Journal%20of%20materials%20chemistry&rft.au=Gai,%20Shili&rft.date=2011-01-01&rft.volume=21&rft.issue=41&rft.spage=16420&rft.epage=16426&rft.pages=16420-16426&rft.issn=0959-9428&rft.eissn=1364-5501&rft_id=info:doi/10.1039/c1jm13357h&rft_dat=%3Cproquest_cross%3E963915195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963915195&rft_id=info:pmid/&rfr_iscdi=true