Storage workload modelling by hidden Markov models: Application to Flash memory
A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need t...
Gespeichert in:
Veröffentlicht in: | Performance evaluation 2012, Vol.69 (1), p.17-40 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Performance evaluation |
container_volume | 69 |
creator | Harrison, P.G. Harrison, S.K. Patel, N.M. Zertal, S. |
description | A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples. |
doi_str_mv | 10.1016/j.peva.2011.07.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963914015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166531611001222</els_id><sourcerecordid>963914015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5i8MSX4I4lrxFJVFJCKOtCBzXLta-s2iYOdFvXfkyjMTDfc-7y6exC6pySlhBaP-7SBk04ZoTQlIiWMXaARnQiWiCz_ukSjLlQkOafFNbqJcU8IyQUnI7T8bH3QW8A_PhxKry2uvIWydPUWr89456yFGn_ocPCnYRWf8LRpSmd063yNW4_npY47XEHlw_kWXW10GeHub47Rav6ymr0li-Xr-2y6SAwXRZuYopByokVuGdFC24kUnOZSSstAZ5wyIAYyngtGgVhYc6ktNVBYo9cgcj5GD0NtE_z3EWKrKhdNd7euwR-jkgWXNCO0T7IhaYKPMcBGNcFVOpwVJap3p_aqd6d6d4oI1bnroOcB6t6Fk4OgonFQG7AugGmV9e4__Bc2zXih</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963914015</pqid></control><display><type>article</type><title>Storage workload modelling by hidden Markov models: Application to Flash memory</title><source>Access via ScienceDirect (Elsevier)</source><creator>Harrison, P.G. ; Harrison, S.K. ; Patel, N.M. ; Zertal, S.</creator><creatorcontrib>Harrison, P.G. ; Harrison, S.K. ; Patel, N.M. ; Zertal, S.</creatorcontrib><description>A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.</description><identifier>ISSN: 0166-5316</identifier><identifier>EISSN: 1872-745X</identifier><identifier>DOI: 10.1016/j.peva.2011.07.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Autocorrelation functions ; Flash memory ; Flash memory (computers) ; Fluid model ; Hidden Markov Model ; IO workload ; Markov modulated Poisson process ; Mathematical models ; Simulators ; Statistics ; Time series ; Translations ; Workload</subject><ispartof>Performance evaluation, 2012, Vol.69 (1), p.17-40</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</citedby><cites>FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.peva.2011.07.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Harrison, P.G.</creatorcontrib><creatorcontrib>Harrison, S.K.</creatorcontrib><creatorcontrib>Patel, N.M.</creatorcontrib><creatorcontrib>Zertal, S.</creatorcontrib><title>Storage workload modelling by hidden Markov models: Application to Flash memory</title><title>Performance evaluation</title><description>A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.</description><subject>Autocorrelation functions</subject><subject>Flash memory</subject><subject>Flash memory (computers)</subject><subject>Fluid model</subject><subject>Hidden Markov Model</subject><subject>IO workload</subject><subject>Markov modulated Poisson process</subject><subject>Mathematical models</subject><subject>Simulators</subject><subject>Statistics</subject><subject>Time series</subject><subject>Translations</subject><subject>Workload</subject><issn>0166-5316</issn><issn>1872-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5i8MSX4I4lrxFJVFJCKOtCBzXLta-s2iYOdFvXfkyjMTDfc-7y6exC6pySlhBaP-7SBk04ZoTQlIiWMXaARnQiWiCz_ukSjLlQkOafFNbqJcU8IyQUnI7T8bH3QW8A_PhxKry2uvIWydPUWr89456yFGn_ocPCnYRWf8LRpSmd063yNW4_npY47XEHlw_kWXW10GeHub47Rav6ymr0li-Xr-2y6SAwXRZuYopByokVuGdFC24kUnOZSSstAZ5wyIAYyngtGgVhYc6ktNVBYo9cgcj5GD0NtE_z3EWKrKhdNd7euwR-jkgWXNCO0T7IhaYKPMcBGNcFVOpwVJap3p_aqd6d6d4oI1bnroOcB6t6Fk4OgonFQG7AugGmV9e4__Bc2zXih</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Harrison, P.G.</creator><creator>Harrison, S.K.</creator><creator>Patel, N.M.</creator><creator>Zertal, S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Storage workload modelling by hidden Markov models: Application to Flash memory</title><author>Harrison, P.G. ; Harrison, S.K. ; Patel, N.M. ; Zertal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Autocorrelation functions</topic><topic>Flash memory</topic><topic>Flash memory (computers)</topic><topic>Fluid model</topic><topic>Hidden Markov Model</topic><topic>IO workload</topic><topic>Markov modulated Poisson process</topic><topic>Mathematical models</topic><topic>Simulators</topic><topic>Statistics</topic><topic>Time series</topic><topic>Translations</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, P.G.</creatorcontrib><creatorcontrib>Harrison, S.K.</creatorcontrib><creatorcontrib>Patel, N.M.</creatorcontrib><creatorcontrib>Zertal, S.</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Performance evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, P.G.</au><au>Harrison, S.K.</au><au>Patel, N.M.</au><au>Zertal, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Storage workload modelling by hidden Markov models: Application to Flash memory</atitle><jtitle>Performance evaluation</jtitle><date>2012</date><risdate>2012</risdate><volume>69</volume><issue>1</issue><spage>17</spage><epage>40</epage><pages>17-40</pages><issn>0166-5316</issn><eissn>1872-745X</eissn><abstract>A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.peva.2011.07.022</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-5316 |
ispartof | Performance evaluation, 2012, Vol.69 (1), p.17-40 |
issn | 0166-5316 1872-745X |
language | eng |
recordid | cdi_proquest_miscellaneous_963914015 |
source | Access via ScienceDirect (Elsevier) |
subjects | Autocorrelation functions Flash memory Flash memory (computers) Fluid model Hidden Markov Model IO workload Markov modulated Poisson process Mathematical models Simulators Statistics Time series Translations Workload |
title | Storage workload modelling by hidden Markov models: Application to Flash memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Storage%20workload%20modelling%20by%20hidden%20Markov%20models:%20Application%20to%20Flash%20memory&rft.jtitle=Performance%20evaluation&rft.au=Harrison,%20P.G.&rft.date=2012&rft.volume=69&rft.issue=1&rft.spage=17&rft.epage=40&rft.pages=17-40&rft.issn=0166-5316&rft.eissn=1872-745X&rft_id=info:doi/10.1016/j.peva.2011.07.022&rft_dat=%3Cproquest_cross%3E963914015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963914015&rft_id=info:pmid/&rft_els_id=S0166531611001222&rfr_iscdi=true |