Storage workload modelling by hidden Markov models: Application to Flash memory

A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Performance evaluation 2012, Vol.69 (1), p.17-40
Hauptverfasser: Harrison, P.G., Harrison, S.K., Patel, N.M., Zertal, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 17
container_title Performance evaluation
container_volume 69
creator Harrison, P.G.
Harrison, S.K.
Patel, N.M.
Zertal, S.
description A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.
doi_str_mv 10.1016/j.peva.2011.07.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963914015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166531611001222</els_id><sourcerecordid>963914015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5i8MSX4I4lrxFJVFJCKOtCBzXLta-s2iYOdFvXfkyjMTDfc-7y6exC6pySlhBaP-7SBk04ZoTQlIiWMXaARnQiWiCz_ukSjLlQkOafFNbqJcU8IyQUnI7T8bH3QW8A_PhxKry2uvIWydPUWr89456yFGn_ocPCnYRWf8LRpSmd063yNW4_npY47XEHlw_kWXW10GeHub47Rav6ymr0li-Xr-2y6SAwXRZuYopByokVuGdFC24kUnOZSSstAZ5wyIAYyngtGgVhYc6ktNVBYo9cgcj5GD0NtE_z3EWKrKhdNd7euwR-jkgWXNCO0T7IhaYKPMcBGNcFVOpwVJap3p_aqd6d6d4oI1bnroOcB6t6Fk4OgonFQG7AugGmV9e4__Bc2zXih</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963914015</pqid></control><display><type>article</type><title>Storage workload modelling by hidden Markov models: Application to Flash memory</title><source>Access via ScienceDirect (Elsevier)</source><creator>Harrison, P.G. ; Harrison, S.K. ; Patel, N.M. ; Zertal, S.</creator><creatorcontrib>Harrison, P.G. ; Harrison, S.K. ; Patel, N.M. ; Zertal, S.</creatorcontrib><description>A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.</description><identifier>ISSN: 0166-5316</identifier><identifier>EISSN: 1872-745X</identifier><identifier>DOI: 10.1016/j.peva.2011.07.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Autocorrelation functions ; Flash memory ; Flash memory (computers) ; Fluid model ; Hidden Markov Model ; IO workload ; Markov modulated Poisson process ; Mathematical models ; Simulators ; Statistics ; Time series ; Translations ; Workload</subject><ispartof>Performance evaluation, 2012, Vol.69 (1), p.17-40</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</citedby><cites>FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.peva.2011.07.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Harrison, P.G.</creatorcontrib><creatorcontrib>Harrison, S.K.</creatorcontrib><creatorcontrib>Patel, N.M.</creatorcontrib><creatorcontrib>Zertal, S.</creatorcontrib><title>Storage workload modelling by hidden Markov models: Application to Flash memory</title><title>Performance evaluation</title><description>A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.</description><subject>Autocorrelation functions</subject><subject>Flash memory</subject><subject>Flash memory (computers)</subject><subject>Fluid model</subject><subject>Hidden Markov Model</subject><subject>IO workload</subject><subject>Markov modulated Poisson process</subject><subject>Mathematical models</subject><subject>Simulators</subject><subject>Statistics</subject><subject>Time series</subject><subject>Translations</subject><subject>Workload</subject><issn>0166-5316</issn><issn>1872-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5i8MSX4I4lrxFJVFJCKOtCBzXLta-s2iYOdFvXfkyjMTDfc-7y6exC6pySlhBaP-7SBk04ZoTQlIiWMXaARnQiWiCz_ukSjLlQkOafFNbqJcU8IyQUnI7T8bH3QW8A_PhxKry2uvIWydPUWr89456yFGn_ocPCnYRWf8LRpSmd063yNW4_npY47XEHlw_kWXW10GeHub47Rav6ymr0li-Xr-2y6SAwXRZuYopByokVuGdFC24kUnOZSSstAZ5wyIAYyngtGgVhYc6ktNVBYo9cgcj5GD0NtE_z3EWKrKhdNd7euwR-jkgWXNCO0T7IhaYKPMcBGNcFVOpwVJap3p_aqd6d6d4oI1bnroOcB6t6Fk4OgonFQG7AugGmV9e4__Bc2zXih</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Harrison, P.G.</creator><creator>Harrison, S.K.</creator><creator>Patel, N.M.</creator><creator>Zertal, S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Storage workload modelling by hidden Markov models: Application to Flash memory</title><author>Harrison, P.G. ; Harrison, S.K. ; Patel, N.M. ; Zertal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c66998a75d20a7ad897315999d2ea4312e0ce435721e0deb39ad1ce6dcabe753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Autocorrelation functions</topic><topic>Flash memory</topic><topic>Flash memory (computers)</topic><topic>Fluid model</topic><topic>Hidden Markov Model</topic><topic>IO workload</topic><topic>Markov modulated Poisson process</topic><topic>Mathematical models</topic><topic>Simulators</topic><topic>Statistics</topic><topic>Time series</topic><topic>Translations</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, P.G.</creatorcontrib><creatorcontrib>Harrison, S.K.</creatorcontrib><creatorcontrib>Patel, N.M.</creatorcontrib><creatorcontrib>Zertal, S.</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Performance evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, P.G.</au><au>Harrison, S.K.</au><au>Patel, N.M.</au><au>Zertal, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Storage workload modelling by hidden Markov models: Application to Flash memory</atitle><jtitle>Performance evaluation</jtitle><date>2012</date><risdate>2012</risdate><volume>69</volume><issue>1</issue><spage>17</spage><epage>40</epage><pages>17-40</pages><issn>0166-5316</issn><eissn>1872-745X</eissn><abstract>A workload analysis technique is presented that processes data from operation type traces and creates a hidden Markov model (HMM) to represent the workload that generated those traces. The HMM can be used to create representative traces for performance models, such as simulators, avoiding the need to repeatedly acquire suitable traces. It can also be used to estimate the transition probabilities and rates of a Markov modulated arrival process directly, for use as input to an analytical performance model of Flash memory. The HMMs obtained from industrial workloads–both synthetic benchmarks, preprocessed by a file translation layer, and real, time-stamped user traces–are validated by comparing their autocorrelation functions and other statistics with those of the corresponding monitored time series. Further, the performance model applications, referred to above, are illustrated by numerical examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.peva.2011.07.022</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-5316
ispartof Performance evaluation, 2012, Vol.69 (1), p.17-40
issn 0166-5316
1872-745X
language eng
recordid cdi_proquest_miscellaneous_963914015
source Access via ScienceDirect (Elsevier)
subjects Autocorrelation functions
Flash memory
Flash memory (computers)
Fluid model
Hidden Markov Model
IO workload
Markov modulated Poisson process
Mathematical models
Simulators
Statistics
Time series
Translations
Workload
title Storage workload modelling by hidden Markov models: Application to Flash memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Storage%20workload%20modelling%20by%20hidden%20Markov%20models:%20Application%20to%20Flash%20memory&rft.jtitle=Performance%20evaluation&rft.au=Harrison,%20P.G.&rft.date=2012&rft.volume=69&rft.issue=1&rft.spage=17&rft.epage=40&rft.pages=17-40&rft.issn=0166-5316&rft.eissn=1872-745X&rft_id=info:doi/10.1016/j.peva.2011.07.022&rft_dat=%3Cproquest_cross%3E963914015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963914015&rft_id=info:pmid/&rft_els_id=S0166531611001222&rfr_iscdi=true