An ecological model with a capital sigma -shaped bifurcation curve
We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2012-04, Vol.13 (2), p.634-642 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | 2 |
container_start_page | 634 |
container_title | Nonlinear analysis: real world applications |
container_volume | 13 |
creator | Lee, Eunkyoung Sasi, Sarath Shivaji, R |
description | We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method. |
doi_str_mv | 10.1016/j.nonrwa.2011.07.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_963908572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963908572</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_9639085723</originalsourceid><addsrcrecordid>eNqNyrsOgjAUgOEOmoiXN3Do5kTt4c6oRuMDuJNjKVBSWqQgr6-DD-D0J19-QvbAGXBIji0z1gwzsoADMJ4yHkcL4kGUZD4EkK3I2rmWc0ghBI-cT4ZKYbWtlUBNO1tKTWc1NhSpwF6NX3Sq7pD6rsFelvSpqmkQOCprqJiGt9ySZYXayd2vG3K4XR-Xu98P9jVJNxadckJqjUbayRV5EuY8i9Mg_P_8AOdJQ7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963908572</pqid></control><display><type>article</type><title>An ecological model with a capital sigma -shaped bifurcation curve</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Eunkyoung ; Sasi, Sarath ; Shivaji, R</creator><creatorcontrib>Lee, Eunkyoung ; Sasi, Sarath ; Shivaji, R</creatorcontrib><description>We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.</description><identifier>ISSN: 1468-1218</identifier><identifier>DOI: 10.1016/j.nonrwa.2011.07.054</identifier><language>eng</language><subject>Bifurcations ; Constants ; Diffusion coefficient ; Dirichlet problem ; Harvesting ; Mathematical models ; Steady state</subject><ispartof>Nonlinear analysis: real world applications, 2012-04, Vol.13 (2), p.634-642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Sasi, Sarath</creatorcontrib><creatorcontrib>Shivaji, R</creatorcontrib><title>An ecological model with a capital sigma -shaped bifurcation curve</title><title>Nonlinear analysis: real world applications</title><description>We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.</description><subject>Bifurcations</subject><subject>Constants</subject><subject>Diffusion coefficient</subject><subject>Dirichlet problem</subject><subject>Harvesting</subject><subject>Mathematical models</subject><subject>Steady state</subject><issn>1468-1218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgjAUgOEOmoiXN3Do5kTt4c6oRuMDuJNjKVBSWqQgr6-DD-D0J19-QvbAGXBIji0z1gwzsoADMJ4yHkcL4kGUZD4EkK3I2rmWc0ghBI-cT4ZKYbWtlUBNO1tKTWc1NhSpwF6NX3Sq7pD6rsFelvSpqmkQOCprqJiGt9ySZYXayd2vG3K4XR-Xu98P9jVJNxadckJqjUbayRV5EuY8i9Mg_P_8AOdJQ7k</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lee, Eunkyoung</creator><creator>Sasi, Sarath</creator><creator>Shivaji, R</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>An ecological model with a capital sigma -shaped bifurcation curve</title><author>Lee, Eunkyoung ; Sasi, Sarath ; Shivaji, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_9639085723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bifurcations</topic><topic>Constants</topic><topic>Diffusion coefficient</topic><topic>Dirichlet problem</topic><topic>Harvesting</topic><topic>Mathematical models</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Sasi, Sarath</creatorcontrib><creatorcontrib>Shivaji, R</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eunkyoung</au><au>Sasi, Sarath</au><au>Shivaji, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ecological model with a capital sigma -shaped bifurcation curve</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>13</volume><issue>2</issue><spage>634</spage><epage>642</epage><pages>634-642</pages><issn>1468-1218</issn><abstract>We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.</abstract><doi>10.1016/j.nonrwa.2011.07.054</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2012-04, Vol.13 (2), p.634-642 |
issn | 1468-1218 |
language | eng |
recordid | cdi_proquest_miscellaneous_963908572 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bifurcations Constants Diffusion coefficient Dirichlet problem Harvesting Mathematical models Steady state |
title | An ecological model with a capital sigma -shaped bifurcation curve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ecological%20model%20with%20a%20capital%20sigma%20-shaped%20bifurcation%20curve&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Lee,%20Eunkyoung&rft.date=2012-04-01&rft.volume=13&rft.issue=2&rft.spage=634&rft.epage=642&rft.pages=634-642&rft.issn=1468-1218&rft_id=info:doi/10.1016/j.nonrwa.2011.07.054&rft_dat=%3Cproquest%3E963908572%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963908572&rft_id=info:pmid/&rfr_iscdi=true |