An ecological model with a capital sigma -shaped bifurcation curve

We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2012-04, Vol.13 (2), p.634-642
Hauptverfasser: Lee, Eunkyoung, Sasi, Sarath, Shivaji, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 2
container_start_page 634
container_title Nonlinear analysis: real world applications
container_volume 13
creator Lee, Eunkyoung
Sasi, Sarath
Shivaji, R
description We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.
doi_str_mv 10.1016/j.nonrwa.2011.07.054
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_963908572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963908572</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_9639085723</originalsourceid><addsrcrecordid>eNqNyrsOgjAUgOEOmoiXN3Do5kTt4c6oRuMDuJNjKVBSWqQgr6-DD-D0J19-QvbAGXBIji0z1gwzsoADMJ4yHkcL4kGUZD4EkK3I2rmWc0ghBI-cT4ZKYbWtlUBNO1tKTWc1NhSpwF6NX3Sq7pD6rsFelvSpqmkQOCprqJiGt9ySZYXayd2vG3K4XR-Xu98P9jVJNxadckJqjUbayRV5EuY8i9Mg_P_8AOdJQ7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963908572</pqid></control><display><type>article</type><title>An ecological model with a capital sigma -shaped bifurcation curve</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Eunkyoung ; Sasi, Sarath ; Shivaji, R</creator><creatorcontrib>Lee, Eunkyoung ; Sasi, Sarath ; Shivaji, R</creatorcontrib><description>We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.</description><identifier>ISSN: 1468-1218</identifier><identifier>DOI: 10.1016/j.nonrwa.2011.07.054</identifier><language>eng</language><subject>Bifurcations ; Constants ; Diffusion coefficient ; Dirichlet problem ; Harvesting ; Mathematical models ; Steady state</subject><ispartof>Nonlinear analysis: real world applications, 2012-04, Vol.13 (2), p.634-642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Sasi, Sarath</creatorcontrib><creatorcontrib>Shivaji, R</creatorcontrib><title>An ecological model with a capital sigma -shaped bifurcation curve</title><title>Nonlinear analysis: real world applications</title><description>We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.</description><subject>Bifurcations</subject><subject>Constants</subject><subject>Diffusion coefficient</subject><subject>Dirichlet problem</subject><subject>Harvesting</subject><subject>Mathematical models</subject><subject>Steady state</subject><issn>1468-1218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgjAUgOEOmoiXN3Do5kTt4c6oRuMDuJNjKVBSWqQgr6-DD-D0J19-QvbAGXBIji0z1gwzsoADMJ4yHkcL4kGUZD4EkK3I2rmWc0ghBI-cT4ZKYbWtlUBNO1tKTWc1NhSpwF6NX3Sq7pD6rsFelvSpqmkQOCprqJiGt9ySZYXayd2vG3K4XR-Xu98P9jVJNxadckJqjUbayRV5EuY8i9Mg_P_8AOdJQ7k</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lee, Eunkyoung</creator><creator>Sasi, Sarath</creator><creator>Shivaji, R</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>An ecological model with a capital sigma -shaped bifurcation curve</title><author>Lee, Eunkyoung ; Sasi, Sarath ; Shivaji, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_9639085723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bifurcations</topic><topic>Constants</topic><topic>Diffusion coefficient</topic><topic>Dirichlet problem</topic><topic>Harvesting</topic><topic>Mathematical models</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Sasi, Sarath</creatorcontrib><creatorcontrib>Shivaji, R</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eunkyoung</au><au>Sasi, Sarath</au><au>Shivaji, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ecological model with a capital sigma -shaped bifurcation curve</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>13</volume><issue>2</issue><spage>634</spage><epage>642</epage><pages>634-642</pages><issn>1468-1218</issn><abstract>We consider the existence of multiple positive solutions to the steady state reaction diffusion equation with Dirichlet boundary conditions of the form: [inline image] Here [inline image] is the diffusion coefficient and K, c and epsilon are positive constants. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting in a spatially homogeneous ecosystem. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. In this paper, we discuss the occurrence of a capital sigma -shaped bifurcation diagram for positive solutions. In particular, for certain parameter values of c,K, epsilon and the diffusion coefficient, we prove the existence of at least four positive solutions. We prove our results by the quadrature method.</abstract><doi>10.1016/j.nonrwa.2011.07.054</doi></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2012-04, Vol.13 (2), p.634-642
issn 1468-1218
language eng
recordid cdi_proquest_miscellaneous_963908572
source Access via ScienceDirect (Elsevier)
subjects Bifurcations
Constants
Diffusion coefficient
Dirichlet problem
Harvesting
Mathematical models
Steady state
title An ecological model with a capital sigma -shaped bifurcation curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ecological%20model%20with%20a%20capital%20sigma%20-shaped%20bifurcation%20curve&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Lee,%20Eunkyoung&rft.date=2012-04-01&rft.volume=13&rft.issue=2&rft.spage=634&rft.epage=642&rft.pages=634-642&rft.issn=1468-1218&rft_id=info:doi/10.1016/j.nonrwa.2011.07.054&rft_dat=%3Cproquest%3E963908572%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963908572&rft_id=info:pmid/&rfr_iscdi=true