Application of the dissipated energy criterion to predict fatigue crack growth of Type 304 stainless steel following a tensile overload

This paper presents the results of numerical simulations of fatigue crack growth performed using three-dimensional elastic–plastic finite element analysis. A simple node release scheme is used to simulate crack advancement. The crack front is assumed to be straight. Crack growth following a tensile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2011-12, Vol.78 (18), p.3183-3195
1. Verfasser: Smith, K.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3195
container_issue 18
container_start_page 3183
container_title Engineering fracture mechanics
container_volume 78
creator Smith, K.V.
description This paper presents the results of numerical simulations of fatigue crack growth performed using three-dimensional elastic–plastic finite element analysis. A simple node release scheme is used to simulate crack advancement. The crack front is assumed to be straight. Crack growth following a tensile overload is simulated. The total energy dissipated per cycle is calculated directly from the finite element analysis and used to predict fatigue crack growth. For comparison, fatigue crack growth rate experiments were performed on Type 304 stainless steel C( T) specimens to determine the effect of a single tensile overload. The dissipated energy per cycle is found to correlate well with the measured fatigue crack growth rate following an overload.
doi_str_mv 10.1016/j.engfracmech.2011.08.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963903399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794411003316</els_id><sourcerecordid>963903399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b440513a755c51afd08d8c5bc649930141b8a2c0ee01e24eb3140cba8d7d45353</originalsourceid><addsrcrecordid>eNqNkMGO0zAQhi0EEqXwDuaAODU7ju0mOa4qWJBW4rKcLWcySV3cONjurvoEvDauukIc9zQjzTf_aD7GPgqoBIjtzaGieRqjxSPhvqpBiAraCmrxiq1E28hNI4V-zVYAovSdUm_Zu5QOANBsW1ixP7fL4h3a7MLMw8jznvjgUnKLzTRwmilOZ47RZYoXJAe-RBocZj6WpelEZWjxF59ieMr7S8TDeSEuQfGUrZs9pVQ6Is_H4H14cvPELc80J-eJh0eKPtjhPXszWp_ow3Nds59fvzzsvm3uf9x9393eb1C2Mm96pUALaRutUQs7DtAOLeoet6rrJAgl-tbWCEQgqFbUS6EAe9sOzaC01HLNPl9zlxh-nyhlc3QJyXs7Uzgl021lB1KWsDXrriTGkFKk0SzRHW08GwHm4t4czH_uzcW9gdYU92X30_MVm9D6wszo0r-AWtdadrIu3O7KUXn50VE0CR3NWARHwmyG4F5w7S_ev6JI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963903399</pqid></control><display><type>article</type><title>Application of the dissipated energy criterion to predict fatigue crack growth of Type 304 stainless steel following a tensile overload</title><source>Access via ScienceDirect (Elsevier)</source><creator>Smith, K.V.</creator><creatorcontrib>Smith, K.V.</creatorcontrib><description>This paper presents the results of numerical simulations of fatigue crack growth performed using three-dimensional elastic–plastic finite element analysis. A simple node release scheme is used to simulate crack advancement. The crack front is assumed to be straight. Crack growth following a tensile overload is simulated. The total energy dissipated per cycle is calculated directly from the finite element analysis and used to predict fatigue crack growth. For comparison, fatigue crack growth rate experiments were performed on Type 304 stainless steel C( T) specimens to determine the effect of a single tensile overload. The dissipated energy per cycle is found to correlate well with the measured fatigue crack growth rate following an overload.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2011.08.021</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Austenitic stainless steels ; Computer simulation ; Crack propagation ; Dissipated energy ; Dissipation ; Exact sciences and technology ; Fatigue crack growth ; Fatigue failure ; Finite element analysis ; Finite element method ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Physics ; Solid mechanics ; Stainless steel ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Tensile overload</subject><ispartof>Engineering fracture mechanics, 2011-12, Vol.78 (18), p.3183-3195</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b440513a755c51afd08d8c5bc649930141b8a2c0ee01e24eb3140cba8d7d45353</citedby><cites>FETCH-LOGICAL-c383t-b440513a755c51afd08d8c5bc649930141b8a2c0ee01e24eb3140cba8d7d45353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2011.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25253932$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, K.V.</creatorcontrib><title>Application of the dissipated energy criterion to predict fatigue crack growth of Type 304 stainless steel following a tensile overload</title><title>Engineering fracture mechanics</title><description>This paper presents the results of numerical simulations of fatigue crack growth performed using three-dimensional elastic–plastic finite element analysis. A simple node release scheme is used to simulate crack advancement. The crack front is assumed to be straight. Crack growth following a tensile overload is simulated. The total energy dissipated per cycle is calculated directly from the finite element analysis and used to predict fatigue crack growth. For comparison, fatigue crack growth rate experiments were performed on Type 304 stainless steel C( T) specimens to determine the effect of a single tensile overload. The dissipated energy per cycle is found to correlate well with the measured fatigue crack growth rate following an overload.</description><subject>Austenitic stainless steels</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Dissipated energy</subject><subject>Dissipation</subject><subject>Exact sciences and technology</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Stainless steel</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Tensile overload</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMGO0zAQhi0EEqXwDuaAODU7ju0mOa4qWJBW4rKcLWcySV3cONjurvoEvDauukIc9zQjzTf_aD7GPgqoBIjtzaGieRqjxSPhvqpBiAraCmrxiq1E28hNI4V-zVYAovSdUm_Zu5QOANBsW1ixP7fL4h3a7MLMw8jznvjgUnKLzTRwmilOZ47RZYoXJAe-RBocZj6WpelEZWjxF59ieMr7S8TDeSEuQfGUrZs9pVQ6Is_H4H14cvPELc80J-eJh0eKPtjhPXszWp_ow3Nds59fvzzsvm3uf9x9393eb1C2Mm96pUALaRutUQs7DtAOLeoet6rrJAgl-tbWCEQgqFbUS6EAe9sOzaC01HLNPl9zlxh-nyhlc3QJyXs7Uzgl021lB1KWsDXrriTGkFKk0SzRHW08GwHm4t4czH_uzcW9gdYU92X30_MVm9D6wszo0r-AWtdadrIu3O7KUXn50VE0CR3NWARHwmyG4F5w7S_ev6JI</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Smith, K.V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20111201</creationdate><title>Application of the dissipated energy criterion to predict fatigue crack growth of Type 304 stainless steel following a tensile overload</title><author>Smith, K.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b440513a755c51afd08d8c5bc649930141b8a2c0ee01e24eb3140cba8d7d45353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Austenitic stainless steels</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Dissipated energy</topic><topic>Dissipation</topic><topic>Exact sciences and technology</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Stainless steel</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Tensile overload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, K.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, K.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the dissipated energy criterion to predict fatigue crack growth of Type 304 stainless steel following a tensile overload</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>78</volume><issue>18</issue><spage>3183</spage><epage>3195</epage><pages>3183-3195</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>This paper presents the results of numerical simulations of fatigue crack growth performed using three-dimensional elastic–plastic finite element analysis. A simple node release scheme is used to simulate crack advancement. The crack front is assumed to be straight. Crack growth following a tensile overload is simulated. The total energy dissipated per cycle is calculated directly from the finite element analysis and used to predict fatigue crack growth. For comparison, fatigue crack growth rate experiments were performed on Type 304 stainless steel C( T) specimens to determine the effect of a single tensile overload. The dissipated energy per cycle is found to correlate well with the measured fatigue crack growth rate following an overload.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2011.08.021</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2011-12, Vol.78 (18), p.3183-3195
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_963903399
source Access via ScienceDirect (Elsevier)
subjects Austenitic stainless steels
Computer simulation
Crack propagation
Dissipated energy
Dissipation
Exact sciences and technology
Fatigue crack growth
Fatigue failure
Finite element analysis
Finite element method
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical analysis
Physics
Solid mechanics
Stainless steel
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Tensile overload
title Application of the dissipated energy criterion to predict fatigue crack growth of Type 304 stainless steel following a tensile overload
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20dissipated%20energy%20criterion%20to%20predict%20fatigue%20crack%20growth%20of%20Type%20304%20stainless%20steel%20following%20a%20tensile%20overload&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Smith,%20K.V.&rft.date=2011-12-01&rft.volume=78&rft.issue=18&rft.spage=3183&rft.epage=3195&rft.pages=3183-3195&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2011.08.021&rft_dat=%3Cproquest_cross%3E963903399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963903399&rft_id=info:pmid/&rft_els_id=S0013794411003316&rfr_iscdi=true