Indentation size effect in nanohardness
It was shown experimentally that changing the indenter load P and the indentation size does not change the total deformation during indentation (εt≈const.), and that fracture does not influence the scale effect. For this reason the physical nature of the scale effect is revealed better by nanoindent...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2011-12, Vol.59 (20), p.7480-7487 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7487 |
---|---|
container_issue | 20 |
container_start_page | 7480 |
container_title | Acta materialia |
container_volume | 59 |
creator | Milman, Yu.V. Golubenko, А.А. Dub, S.N. |
description | It was shown experimentally that changing the indenter load P and the indentation size does not change the total deformation during indentation (εt≈const.), and that fracture does not influence the scale effect. For this reason the physical nature of the scale effect is revealed better by nanoindentation and under more “clean” conditions than in uniaxial deformation tests. The indentation size effect (ISE) is revealed as the change of mechanical properties determined by indentation. It was shown that reduction of the indent size leads to both increasing hardness and decreasing plasticity, determined by indentation. The phenomenological approach to the ISE (in which the power dependence of the indenter load P on the indenter displacement of h is used) made it possible to describe the dependence of nanohardness H(P) and H(h) by simple equations. Nanohardness was determined for 21 different crystals, and parameters that enabled the size dependence of H for these crystals to be calculated were determined. It is proposed to determine nanohardness at h=const. instead of P=const. and to recalculate H using our equations for fixed values of hf=1000nm for metals and hf=100nm for hard materials. The use of the developed technique makes it possible to compare results of nanohardness tests from different sources for different indenter loads. |
doi_str_mv | 10.1016/j.actamat.2011.08.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963901336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411006021</els_id><sourcerecordid>963901336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-b11bc51e358242559c99431e17e446d404a04f227608587225dacdaf935a7d7f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiL9LRrPje7J5FitVDwoucwTSaYss3WZCvor3dLi1dPM4fnnY-HkFtGK0ZZfb-pwA6whaHilLGKNhXl-oxMWKNFyaUS52MvVFvWUslLcpXzhlLGtaQTMltGh3GAIfSxyOEHC_Qe7VCEWESI_QckFzHna3Lhoct4c6pT8r54epu_lKvX5-X8cVVaodlQrhlbW8VQqIZLrlRr21YKhkyjlLWTVAKVnnNd00Y1mnPlwDrwrVCgnfZiSmbHubvUf-4xD2YbssWug4j9Ppu2Fi1lQtQjqY6kTX3OCb3ZpbCF9G0YNQcvZmNOXszBi6GNGb2MubvTBsgWOp8g2pD_wlxqNV524B6OHI7vfgVMJtuA0aILaRRkXB_-2fQLRup5SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963901336</pqid></control><display><type>article</type><title>Indentation size effect in nanohardness</title><source>Elsevier ScienceDirect Journals</source><creator>Milman, Yu.V. ; Golubenko, А.А. ; Dub, S.N.</creator><creatorcontrib>Milman, Yu.V. ; Golubenko, А.А. ; Dub, S.N.</creatorcontrib><description>It was shown experimentally that changing the indenter load P and the indentation size does not change the total deformation during indentation (εt≈const.), and that fracture does not influence the scale effect. For this reason the physical nature of the scale effect is revealed better by nanoindentation and under more “clean” conditions than in uniaxial deformation tests. The indentation size effect (ISE) is revealed as the change of mechanical properties determined by indentation. It was shown that reduction of the indent size leads to both increasing hardness and decreasing plasticity, determined by indentation. The phenomenological approach to the ISE (in which the power dependence of the indenter load P on the indenter displacement of h is used) made it possible to describe the dependence of nanohardness H(P) and H(h) by simple equations. Nanohardness was determined for 21 different crystals, and parameters that enabled the size dependence of H for these crystals to be calculated were determined. It is proposed to determine nanohardness at h=const. instead of P=const. and to recalculate H using our equations for fixed values of hf=1000nm for metals and hf=100nm for hard materials. The use of the developed technique makes it possible to compare results of nanohardness tests from different sources for different indenter loads.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.08.027</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Crystals ; Deformation ; Exact sciences and technology ; Fracture mechanics ; Hardness test ; Indentation ; Indentation size effect ; Indenters ; Mathematical analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Nanohardness ; Nanoindentation ; Plasticity ; Scale effect</subject><ispartof>Acta materialia, 2011-12, Vol.59 (20), p.7480-7487</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-b11bc51e358242559c99431e17e446d404a04f227608587225dacdaf935a7d7f3</citedby><cites>FETCH-LOGICAL-c371t-b11bc51e358242559c99431e17e446d404a04f227608587225dacdaf935a7d7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645411006021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755877$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Milman, Yu.V.</creatorcontrib><creatorcontrib>Golubenko, А.А.</creatorcontrib><creatorcontrib>Dub, S.N.</creatorcontrib><title>Indentation size effect in nanohardness</title><title>Acta materialia</title><description>It was shown experimentally that changing the indenter load P and the indentation size does not change the total deformation during indentation (εt≈const.), and that fracture does not influence the scale effect. For this reason the physical nature of the scale effect is revealed better by nanoindentation and under more “clean” conditions than in uniaxial deformation tests. The indentation size effect (ISE) is revealed as the change of mechanical properties determined by indentation. It was shown that reduction of the indent size leads to both increasing hardness and decreasing plasticity, determined by indentation. The phenomenological approach to the ISE (in which the power dependence of the indenter load P on the indenter displacement of h is used) made it possible to describe the dependence of nanohardness H(P) and H(h) by simple equations. Nanohardness was determined for 21 different crystals, and parameters that enabled the size dependence of H for these crystals to be calculated were determined. It is proposed to determine nanohardness at h=const. instead of P=const. and to recalculate H using our equations for fixed values of hf=1000nm for metals and hf=100nm for hard materials. The use of the developed technique makes it possible to compare results of nanohardness tests from different sources for different indenter loads.</description><subject>Applied sciences</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Hardness test</subject><subject>Indentation</subject><subject>Indentation size effect</subject><subject>Indenters</subject><subject>Mathematical analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Plasticity</subject><subject>Scale effect</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiL9LRrPje7J5FitVDwoucwTSaYss3WZCvor3dLi1dPM4fnnY-HkFtGK0ZZfb-pwA6whaHilLGKNhXl-oxMWKNFyaUS52MvVFvWUslLcpXzhlLGtaQTMltGh3GAIfSxyOEHC_Qe7VCEWESI_QckFzHna3Lhoct4c6pT8r54epu_lKvX5-X8cVVaodlQrhlbW8VQqIZLrlRr21YKhkyjlLWTVAKVnnNd00Y1mnPlwDrwrVCgnfZiSmbHubvUf-4xD2YbssWug4j9Ppu2Fi1lQtQjqY6kTX3OCb3ZpbCF9G0YNQcvZmNOXszBi6GNGb2MubvTBsgWOp8g2pD_wlxqNV524B6OHI7vfgVMJtuA0aILaRRkXB_-2fQLRup5SA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Milman, Yu.V.</creator><creator>Golubenko, А.А.</creator><creator>Dub, S.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>Indentation size effect in nanohardness</title><author>Milman, Yu.V. ; Golubenko, А.А. ; Dub, S.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-b11bc51e358242559c99431e17e446d404a04f227608587225dacdaf935a7d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Hardness test</topic><topic>Indentation</topic><topic>Indentation size effect</topic><topic>Indenters</topic><topic>Mathematical analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Plasticity</topic><topic>Scale effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milman, Yu.V.</creatorcontrib><creatorcontrib>Golubenko, А.А.</creatorcontrib><creatorcontrib>Dub, S.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milman, Yu.V.</au><au>Golubenko, А.А.</au><au>Dub, S.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indentation size effect in nanohardness</atitle><jtitle>Acta materialia</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>59</volume><issue>20</issue><spage>7480</spage><epage>7487</epage><pages>7480-7487</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>It was shown experimentally that changing the indenter load P and the indentation size does not change the total deformation during indentation (εt≈const.), and that fracture does not influence the scale effect. For this reason the physical nature of the scale effect is revealed better by nanoindentation and under more “clean” conditions than in uniaxial deformation tests. The indentation size effect (ISE) is revealed as the change of mechanical properties determined by indentation. It was shown that reduction of the indent size leads to both increasing hardness and decreasing plasticity, determined by indentation. The phenomenological approach to the ISE (in which the power dependence of the indenter load P on the indenter displacement of h is used) made it possible to describe the dependence of nanohardness H(P) and H(h) by simple equations. Nanohardness was determined for 21 different crystals, and parameters that enabled the size dependence of H for these crystals to be calculated were determined. It is proposed to determine nanohardness at h=const. instead of P=const. and to recalculate H using our equations for fixed values of hf=1000nm for metals and hf=100nm for hard materials. The use of the developed technique makes it possible to compare results of nanohardness tests from different sources for different indenter loads.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.08.027</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2011-12, Vol.59 (20), p.7480-7487 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_963901336 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Crystals Deformation Exact sciences and technology Fracture mechanics Hardness test Indentation Indentation size effect Indenters Mathematical analysis Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Nanohardness Nanoindentation Plasticity Scale effect |
title | Indentation size effect in nanohardness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indentation%20size%20effect%20in%20nanohardness&rft.jtitle=Acta%20materialia&rft.au=Milman,%20Yu.V.&rft.date=2011-12-01&rft.volume=59&rft.issue=20&rft.spage=7480&rft.epage=7487&rft.pages=7480-7487&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.08.027&rft_dat=%3Cproquest_cross%3E963901336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963901336&rft_id=info:pmid/&rft_els_id=S1359645411006021&rfr_iscdi=true |