Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications
In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering c...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-02, Vol.75 (3), p.1089-1103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 3 |
container_start_page | 1089 |
container_title | Nonlinear analysis |
container_volume | 75 |
creator | Bao, T.Q. Tammer, Chr |
description | In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich
[10] and Durea and Dutta
[5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed. |
doi_str_mv | 10.1016/j.na.2011.09.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963899173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11006559</els_id><sourcerecordid>963899173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</originalsourceid><addsrcrecordid>eNp1kE1P3DAURa2KSh2G7rv0BnWV4I-JE3eHENBKI7ULqLqzXuwX5FHGSf0ylcqvxzCIHSu_xT3XuoexL1LUUkhzsasT1EpIWQtbC7X5wFaya3XVKNmcsJXQRlXNxvz5xE6JdkII2WqzYr-38JAhPSBP6JEI8n_upxTiEqdEfJgy_wUZl4nvY4r7-IiZeEz8kubxkAKnGQrGoZwwz2P08AKesY8DjISfX981u7-5vrv6Xm1_3v64utxWXjdmqayQ3g_SYAitNQMC9io02oQeRRtU0Krb-FbYAWwPfjBKi6Ztm75XfVMWBb1mX4-9c57-HpAWt4_kcRwh4XQgZ43urC1TS1Ickz5PRBkHN-e4L3OdFO7ZoNu5BO7ZoBPWFYMFOX8tB_IwDsWTj_TGqU0nO1261-zbMYdl6b-I2ZGPmDyGmNEvLkzx_U-eAIAwhtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963899173</pqid></control><display><type>article</type><title>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bao, T.Q. ; Tammer, Chr</creator><creatorcontrib>Bao, T.Q. ; Tammer, Chr</creatorcontrib><description>In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich
[10] and Durea and Dutta
[5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.09.024</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Approximation ; Asplund spaces ; Asymptotic properties ; Calculus of variations and optimal control ; Exact sciences and technology ; Finance ; Limiting (Mordukhovich) subdifferential ; Mapping ; Mathematical analysis ; Mathematics ; Multiobjective optimization ; Necessary optimality conditions ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimization ; Pareto optimality ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2012-02, Vol.75 (3), p.1089-1103</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</citedby><cites>FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2011.09.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24818317$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, T.Q.</creatorcontrib><creatorcontrib>Tammer, Chr</creatorcontrib><title>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</title><title>Nonlinear analysis</title><description>In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich
[10] and Durea and Dutta
[5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.</description><subject>Approximation</subject><subject>Asplund spaces</subject><subject>Asymptotic properties</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>Limiting (Mordukhovich) subdifferential</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multiobjective optimization</subject><subject>Necessary optimality conditions</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1P3DAURa2KSh2G7rv0BnWV4I-JE3eHENBKI7ULqLqzXuwX5FHGSf0ylcqvxzCIHSu_xT3XuoexL1LUUkhzsasT1EpIWQtbC7X5wFaya3XVKNmcsJXQRlXNxvz5xE6JdkII2WqzYr-38JAhPSBP6JEI8n_upxTiEqdEfJgy_wUZl4nvY4r7-IiZeEz8kubxkAKnGQrGoZwwz2P08AKesY8DjISfX981u7-5vrv6Xm1_3v64utxWXjdmqayQ3g_SYAitNQMC9io02oQeRRtU0Krb-FbYAWwPfjBKi6Ztm75XfVMWBb1mX4-9c57-HpAWt4_kcRwh4XQgZ43urC1TS1Ickz5PRBkHN-e4L3OdFO7ZoNu5BO7ZoBPWFYMFOX8tB_IwDsWTj_TGqU0nO1261-zbMYdl6b-I2ZGPmDyGmNEvLkzx_U-eAIAwhtY</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Bao, T.Q.</creator><creator>Tammer, Chr</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</title><author>Bao, T.Q. ; Tammer, Chr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Asplund spaces</topic><topic>Asymptotic properties</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>Limiting (Mordukhovich) subdifferential</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multiobjective optimization</topic><topic>Necessary optimality conditions</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, T.Q.</creatorcontrib><creatorcontrib>Tammer, Chr</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, T.Q.</au><au>Tammer, Chr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>75</volume><issue>3</issue><spage>1089</spage><epage>1103</epage><pages>1089-1103</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich
[10] and Durea and Dutta
[5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.09.024</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2012-02, Vol.75 (3), p.1089-1103 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_963899173 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Asplund spaces Asymptotic properties Calculus of variations and optimal control Exact sciences and technology Finance Limiting (Mordukhovich) subdifferential Mapping Mathematical analysis Mathematics Multiobjective optimization Necessary optimality conditions Nonlinearity Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Optimization Pareto optimality Sciences and techniques of general use |
title | Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lagrange%20necessary%20conditions%20for%20Pareto%20minimizers%20in%20Asplund%20spaces%20and%20applications&rft.jtitle=Nonlinear%20analysis&rft.au=Bao,%20T.Q.&rft.date=2012-02-01&rft.volume=75&rft.issue=3&rft.spage=1089&rft.epage=1103&rft.pages=1089-1103&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2011.09.024&rft_dat=%3Cproquest_cross%3E963899173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963899173&rft_id=info:pmid/&rft_els_id=S0362546X11006559&rfr_iscdi=true |