Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications

In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-02, Vol.75 (3), p.1089-1103
Hauptverfasser: Bao, T.Q., Tammer, Chr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1103
container_issue 3
container_start_page 1089
container_title Nonlinear analysis
container_volume 75
creator Bao, T.Q.
Tammer, Chr
description In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich [10] and Durea and Dutta [5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.
doi_str_mv 10.1016/j.na.2011.09.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963899173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11006559</els_id><sourcerecordid>963899173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</originalsourceid><addsrcrecordid>eNp1kE1P3DAURa2KSh2G7rv0BnWV4I-JE3eHENBKI7ULqLqzXuwX5FHGSf0ylcqvxzCIHSu_xT3XuoexL1LUUkhzsasT1EpIWQtbC7X5wFaya3XVKNmcsJXQRlXNxvz5xE6JdkII2WqzYr-38JAhPSBP6JEI8n_upxTiEqdEfJgy_wUZl4nvY4r7-IiZeEz8kubxkAKnGQrGoZwwz2P08AKesY8DjISfX981u7-5vrv6Xm1_3v64utxWXjdmqayQ3g_SYAitNQMC9io02oQeRRtU0Krb-FbYAWwPfjBKi6Ztm75XfVMWBb1mX4-9c57-HpAWt4_kcRwh4XQgZ43urC1TS1Ickz5PRBkHN-e4L3OdFO7ZoNu5BO7ZoBPWFYMFOX8tB_IwDsWTj_TGqU0nO1261-zbMYdl6b-I2ZGPmDyGmNEvLkzx_U-eAIAwhtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963899173</pqid></control><display><type>article</type><title>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bao, T.Q. ; Tammer, Chr</creator><creatorcontrib>Bao, T.Q. ; Tammer, Chr</creatorcontrib><description>In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich [10] and Durea and Dutta [5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.09.024</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Approximation ; Asplund spaces ; Asymptotic properties ; Calculus of variations and optimal control ; Exact sciences and technology ; Finance ; Limiting (Mordukhovich) subdifferential ; Mapping ; Mathematical analysis ; Mathematics ; Multiobjective optimization ; Necessary optimality conditions ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimization ; Pareto optimality ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2012-02, Vol.75 (3), p.1089-1103</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</citedby><cites>FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2011.09.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24818317$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, T.Q.</creatorcontrib><creatorcontrib>Tammer, Chr</creatorcontrib><title>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</title><title>Nonlinear analysis</title><description>In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich [10] and Durea and Dutta [5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.</description><subject>Approximation</subject><subject>Asplund spaces</subject><subject>Asymptotic properties</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>Limiting (Mordukhovich) subdifferential</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multiobjective optimization</subject><subject>Necessary optimality conditions</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1P3DAURa2KSh2G7rv0BnWV4I-JE3eHENBKI7ULqLqzXuwX5FHGSf0ylcqvxzCIHSu_xT3XuoexL1LUUkhzsasT1EpIWQtbC7X5wFaya3XVKNmcsJXQRlXNxvz5xE6JdkII2WqzYr-38JAhPSBP6JEI8n_upxTiEqdEfJgy_wUZl4nvY4r7-IiZeEz8kubxkAKnGQrGoZwwz2P08AKesY8DjISfX981u7-5vrv6Xm1_3v64utxWXjdmqayQ3g_SYAitNQMC9io02oQeRRtU0Krb-FbYAWwPfjBKi6Ztm75XfVMWBb1mX4-9c57-HpAWt4_kcRwh4XQgZ43urC1TS1Ickz5PRBkHN-e4L3OdFO7ZoNu5BO7ZoBPWFYMFOX8tB_IwDsWTj_TGqU0nO1261-zbMYdl6b-I2ZGPmDyGmNEvLkzx_U-eAIAwhtY</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Bao, T.Q.</creator><creator>Tammer, Chr</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</title><author>Bao, T.Q. ; Tammer, Chr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-901ccf16edd796feaeb2d536dbe07d2d3284c709fa9bacf62305775bb2b5036d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Asplund spaces</topic><topic>Asymptotic properties</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>Limiting (Mordukhovich) subdifferential</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multiobjective optimization</topic><topic>Necessary optimality conditions</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, T.Q.</creatorcontrib><creatorcontrib>Tammer, Chr</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, T.Q.</au><au>Tammer, Chr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>75</volume><issue>3</issue><spage>1089</spage><epage>1103</epage><pages>1089-1103</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich [10] and Durea and Dutta [5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.09.024</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2012-02, Vol.75 (3), p.1089-1103
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_963899173
source Access via ScienceDirect (Elsevier)
subjects Approximation
Asplund spaces
Asymptotic properties
Calculus of variations and optimal control
Exact sciences and technology
Finance
Limiting (Mordukhovich) subdifferential
Mapping
Mathematical analysis
Mathematics
Multiobjective optimization
Necessary optimality conditions
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization
Pareto optimality
Sciences and techniques of general use
title Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lagrange%20necessary%20conditions%20for%20Pareto%20minimizers%20in%20Asplund%20spaces%20and%20applications&rft.jtitle=Nonlinear%20analysis&rft.au=Bao,%20T.Q.&rft.date=2012-02-01&rft.volume=75&rft.issue=3&rft.spage=1089&rft.epage=1103&rft.pages=1089-1103&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2011.09.024&rft_dat=%3Cproquest_cross%3E963899173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963899173&rft_id=info:pmid/&rft_els_id=S0362546X11006559&rfr_iscdi=true