Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications

In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-02, Vol.75 (3), p.1089-1103
Hauptverfasser: Bao, T.Q., Tammer, Chr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich [10] and Durea and Dutta [5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.09.024