Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications
In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering c...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-02, Vol.75 (3), p.1089-1103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, new necessary conditions for Pareto minimal points to sets and Pareto minimizers for constrained multiobjective optimization problems are established without the sequentially normal compactness property and the asymptotical compactness condition imposed on closed and convex ordering cones in Bao and Mordukhovich
[10] and Durea and Dutta
[5], respectively. Our approach is based on a version of the separation theorem for nonconvex sets and the subdifferentials of vector-valued and set-valued mappings. Furthermore, applications in mathematical finance and approximation theory are discussed. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2011.09.024 |