Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds

Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-05, Vol.13 (19), p.8869-8880
Hauptverfasser: MEGERLE, Uwe, WENNINGER, Matthias, KUTTA, Roger-Jan, LECHNER, Robert, KÖNIG, Burkhard, DICK, Bernhard, RIEDLE, Eberhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8880
container_issue 19
container_start_page 8869
container_title Physical chemistry chemical physics : PCCP
container_volume 13
creator MEGERLE, Uwe
WENNINGER, Matthias
KUTTA, Roger-Jan
LECHNER, Robert
KÖNIG, Burkhard
DICK, Bernhard
RIEDLE, Eberhard
description Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ∼6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations >100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.
doi_str_mv 10.1039/c1cp20190e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963895716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864192354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-8a1a0e57d2c4d54bf9b663b1310e70f446ac3d50e9c6e23ef0e897addc3e14283</originalsourceid><addsrcrecordid>eNqF0UFrFTEQB_Agiq1tL_0AkosIwmqyyWY3Rym2FQpe7HnJTiZ9kWyyJnnV10_gx3ZrX9ujpxmYHwMzf0JOOfvImdCfgMPSMq4ZviCHXCrRaDbIl099rw7Im1J-MMZ4x8VrctCuEy5bdUj-XMdsbjH4eEPrBqkL5tbHBkw1YXeHli6bVFP67a2pPkWaHJ0w3u2CB2oCpE0K9JevG1qzicVjrNRMJeXlny4LQs2pQFp21OU007KdmsVDamhNdPawDhFStOWYvHImFDzZ1yNyff7l-9llc_Xt4uvZ56sGxCBrMxhuGHa9bUHaTk5OT0qJiQvOsGdOSmVA2I6hBoWtQMdw0L2xFgSuFw_iiLx_2Lvk9HOLpY6zL4AhmIhpW0atxKC7nqv_ykFJrlvRyVV-eJD355SMblyyn03ejZyN9xGNzxGt-O1-7Xaa0T7Rx0xW8G4PTAET3PpY8OXZSa46PfTiL4K2nTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864192354</pqid></control><display><type>article</type><title>Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>MEGERLE, Uwe ; WENNINGER, Matthias ; KUTTA, Roger-Jan ; LECHNER, Robert ; KÖNIG, Burkhard ; DICK, Bernhard ; RIEDLE, Eberhard</creator><creatorcontrib>MEGERLE, Uwe ; WENNINGER, Matthias ; KUTTA, Roger-Jan ; LECHNER, Robert ; KÖNIG, Burkhard ; DICK, Bernhard ; RIEDLE, Eberhard</creatorcontrib><description>Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ∼6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations &gt;100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c1cp20190e</identifier><identifier>PMID: 21461426</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohols ; Benzyl Alcohol - chemistry ; Catalysis ; Channels ; Charge ; Chemistry ; Dissolution ; Electron transfer ; Exact sciences and technology ; Flavins - chemistry ; General and physical chemistry ; Mathematical models ; Molecular Structure ; Organic chemistry ; Oxidation-Reduction ; Photochemistry ; Photooxidation ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Spectrum Analysis ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Time Factors</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-05, Vol.13 (19), p.8869-8880</ispartof><rights>2015 INIST-CNRS</rights><rights>The Owner Societies 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-8a1a0e57d2c4d54bf9b663b1310e70f446ac3d50e9c6e23ef0e897addc3e14283</citedby><cites>FETCH-LOGICAL-c384t-8a1a0e57d2c4d54bf9b663b1310e70f446ac3d50e9c6e23ef0e897addc3e14283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24165987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21461426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MEGERLE, Uwe</creatorcontrib><creatorcontrib>WENNINGER, Matthias</creatorcontrib><creatorcontrib>KUTTA, Roger-Jan</creatorcontrib><creatorcontrib>LECHNER, Robert</creatorcontrib><creatorcontrib>KÖNIG, Burkhard</creatorcontrib><creatorcontrib>DICK, Bernhard</creatorcontrib><creatorcontrib>RIEDLE, Eberhard</creatorcontrib><title>Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ∼6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations &gt;100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.</description><subject>Alcohols</subject><subject>Benzyl Alcohol - chemistry</subject><subject>Catalysis</subject><subject>Channels</subject><subject>Charge</subject><subject>Chemistry</subject><subject>Dissolution</subject><subject>Electron transfer</subject><subject>Exact sciences and technology</subject><subject>Flavins - chemistry</subject><subject>General and physical chemistry</subject><subject>Mathematical models</subject><subject>Molecular Structure</subject><subject>Organic chemistry</subject><subject>Oxidation-Reduction</subject><subject>Photochemistry</subject><subject>Photooxidation</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Spectrum Analysis</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Time Factors</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFrFTEQB_Agiq1tL_0AkosIwmqyyWY3Rym2FQpe7HnJTiZ9kWyyJnnV10_gx3ZrX9ujpxmYHwMzf0JOOfvImdCfgMPSMq4ZviCHXCrRaDbIl099rw7Im1J-MMZ4x8VrctCuEy5bdUj-XMdsbjH4eEPrBqkL5tbHBkw1YXeHli6bVFP67a2pPkWaHJ0w3u2CB2oCpE0K9JevG1qzicVjrNRMJeXlny4LQs2pQFp21OU007KdmsVDamhNdPawDhFStOWYvHImFDzZ1yNyff7l-9llc_Xt4uvZ56sGxCBrMxhuGHa9bUHaTk5OT0qJiQvOsGdOSmVA2I6hBoWtQMdw0L2xFgSuFw_iiLx_2Lvk9HOLpY6zL4AhmIhpW0atxKC7nqv_ykFJrlvRyVV-eJD355SMblyyn03ejZyN9xGNzxGt-O1-7Xaa0T7Rx0xW8G4PTAET3PpY8OXZSa46PfTiL4K2nTQ</recordid><startdate>20110521</startdate><enddate>20110521</enddate><creator>MEGERLE, Uwe</creator><creator>WENNINGER, Matthias</creator><creator>KUTTA, Roger-Jan</creator><creator>LECHNER, Robert</creator><creator>KÖNIG, Burkhard</creator><creator>DICK, Bernhard</creator><creator>RIEDLE, Eberhard</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110521</creationdate><title>Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds</title><author>MEGERLE, Uwe ; WENNINGER, Matthias ; KUTTA, Roger-Jan ; LECHNER, Robert ; KÖNIG, Burkhard ; DICK, Bernhard ; RIEDLE, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-8a1a0e57d2c4d54bf9b663b1310e70f446ac3d50e9c6e23ef0e897addc3e14283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohols</topic><topic>Benzyl Alcohol - chemistry</topic><topic>Catalysis</topic><topic>Channels</topic><topic>Charge</topic><topic>Chemistry</topic><topic>Dissolution</topic><topic>Electron transfer</topic><topic>Exact sciences and technology</topic><topic>Flavins - chemistry</topic><topic>General and physical chemistry</topic><topic>Mathematical models</topic><topic>Molecular Structure</topic><topic>Organic chemistry</topic><topic>Oxidation-Reduction</topic><topic>Photochemistry</topic><topic>Photooxidation</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Spectrum Analysis</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEGERLE, Uwe</creatorcontrib><creatorcontrib>WENNINGER, Matthias</creatorcontrib><creatorcontrib>KUTTA, Roger-Jan</creatorcontrib><creatorcontrib>LECHNER, Robert</creatorcontrib><creatorcontrib>KÖNIG, Burkhard</creatorcontrib><creatorcontrib>DICK, Bernhard</creatorcontrib><creatorcontrib>RIEDLE, Eberhard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEGERLE, Uwe</au><au>WENNINGER, Matthias</au><au>KUTTA, Roger-Jan</au><au>LECHNER, Robert</au><au>KÖNIG, Burkhard</au><au>DICK, Bernhard</au><au>RIEDLE, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-05-21</date><risdate>2011</risdate><volume>13</volume><issue>19</issue><spage>8869</spage><epage>8880</epage><pages>8869-8880</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ∼6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations &gt;100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21461426</pmid><doi>10.1039/c1cp20190e</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2011-05, Vol.13 (19), p.8869-8880
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_963895716
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alcohols
Benzyl Alcohol - chemistry
Catalysis
Channels
Charge
Chemistry
Dissolution
Electron transfer
Exact sciences and technology
Flavins - chemistry
General and physical chemistry
Mathematical models
Molecular Structure
Organic chemistry
Oxidation-Reduction
Photochemistry
Photooxidation
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Spectrum Analysis
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Time Factors
title Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20flavin-catalyzed%20photooxidation%20of%20benzylic%20alcohol%20with%20transient%20absorption%20spectroscopy%20from%20sub-pico-%20to%20microseconds&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=MEGERLE,%20Uwe&rft.date=2011-05-21&rft.volume=13&rft.issue=19&rft.spage=8869&rft.epage=8880&rft.pages=8869-8880&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c1cp20190e&rft_dat=%3Cproquest_cross%3E864192354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864192354&rft_id=info:pmid/21461426&rfr_iscdi=true