Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales
Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes...
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2011, Vol.24 (1), p.43-60 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Computers, materials & continua |
container_volume | 24 |
creator | Dongare, A M Rajendran, A M Lamattina, B Zikry, M A Brenner, D W |
description | Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates. |
doi_str_mv | 10.3970/cmc.2011.024.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_963893441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963893441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p215t-aedcb5696ffaa9fb5bcd67f4334e40e7b1ddc2b766f62efa4af9a3fc4fcd1fbb3</originalsourceid><addsrcrecordid>eNpdjj1PwzAURS0EEqWwM1piYErwV5x6QiVQQKpgAObo2XkWqZy4xAlS_z1FIAame4dzri4h55zl0pTsynUuF4zznAmVMyUPyIwXSmdCCH341_nimJyktGFMamnYjFzf7nroWkdX0IZpQHqD7_DZxoFGT5-gj27YpRFCaHuk1URhpMsxfgsvDgKmU3LkISQ8-805eVvdvVYP2fr5_rFarrOt4MWYATbOFtpo7wGMt4V1jS69klKhYlha3jRO2FJrrwV6UOANSO-Udw331so5ufzZ3Q7xY8I01l2bHIYAPcYp1UbLhZFK8T158Y_cxGno9-dqIY1mZcFZKb8AGEdaig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396075107</pqid></control><display><type>article</type><title>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dongare, A M ; Rajendran, A M ; Lamattina, B ; Zikry, M A ; Brenner, D W</creator><creatorcontrib>Dongare, A M ; Rajendran, A M ; Lamattina, B ; Zikry, M A ; Brenner, D W</creatorcontrib><description>Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.</description><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.3970/cmc.2011.024.043</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Coalescing ; COMPUTER SIMULATION ; CRYSTAL STRUCTURE ; DEFORMATION ; Evolution ; FAILURE ; Grain size ; GRAIN SIZE AND SHAPE ; Molecular dynamics ; Nanocrystals ; NUCLEATION ; Plastic deformation ; Strain ; STRAIN RATE ; Void fraction ; VOIDS</subject><ispartof>Computers, materials & continua, 2011, Vol.24 (1), p.43-60</ispartof><rights>2011. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Dongare, A M</creatorcontrib><creatorcontrib>Rajendran, A M</creatorcontrib><creatorcontrib>Lamattina, B</creatorcontrib><creatorcontrib>Zikry, M A</creatorcontrib><creatorcontrib>Brenner, D W</creatorcontrib><title>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</title><title>Computers, materials & continua</title><description>Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.</description><subject>Coalescing</subject><subject>COMPUTER SIMULATION</subject><subject>CRYSTAL STRUCTURE</subject><subject>DEFORMATION</subject><subject>Evolution</subject><subject>FAILURE</subject><subject>Grain size</subject><subject>GRAIN SIZE AND SHAPE</subject><subject>Molecular dynamics</subject><subject>Nanocrystals</subject><subject>NUCLEATION</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>STRAIN RATE</subject><subject>Void fraction</subject><subject>VOIDS</subject><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjj1PwzAURS0EEqWwM1piYErwV5x6QiVQQKpgAObo2XkWqZy4xAlS_z1FIAame4dzri4h55zl0pTsynUuF4zznAmVMyUPyIwXSmdCCH341_nimJyktGFMamnYjFzf7nroWkdX0IZpQHqD7_DZxoFGT5-gj27YpRFCaHuk1URhpMsxfgsvDgKmU3LkISQ8-805eVvdvVYP2fr5_rFarrOt4MWYATbOFtpo7wGMt4V1jS69klKhYlha3jRO2FJrrwV6UOANSO-Udw331so5ufzZ3Q7xY8I01l2bHIYAPcYp1UbLhZFK8T158Y_cxGno9-dqIY1mZcFZKb8AGEdaig</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Dongare, A M</creator><creator>Rajendran, A M</creator><creator>Lamattina, B</creator><creator>Zikry, M A</creator><creator>Brenner, D W</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>H8G</scope></search><sort><creationdate>2011</creationdate><title>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</title><author>Dongare, A M ; Rajendran, A M ; Lamattina, B ; Zikry, M A ; Brenner, D W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p215t-aedcb5696ffaa9fb5bcd67f4334e40e7b1ddc2b766f62efa4af9a3fc4fcd1fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coalescing</topic><topic>COMPUTER SIMULATION</topic><topic>CRYSTAL STRUCTURE</topic><topic>DEFORMATION</topic><topic>Evolution</topic><topic>FAILURE</topic><topic>Grain size</topic><topic>GRAIN SIZE AND SHAPE</topic><topic>Molecular dynamics</topic><topic>Nanocrystals</topic><topic>NUCLEATION</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>STRAIN RATE</topic><topic>Void fraction</topic><topic>VOIDS</topic><toplevel>online_resources</toplevel><creatorcontrib>Dongare, A M</creatorcontrib><creatorcontrib>Rajendran, A M</creatorcontrib><creatorcontrib>Lamattina, B</creatorcontrib><creatorcontrib>Zikry, M A</creatorcontrib><creatorcontrib>Brenner, D W</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Copper Technical Reference Library</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongare, A M</au><au>Rajendran, A M</au><au>Lamattina, B</au><au>Zikry, M A</au><au>Brenner, D W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</atitle><jtitle>Computers, materials & continua</jtitle><date>2011</date><risdate>2011</risdate><volume>24</volume><issue>1</issue><spage>43</spage><epage>60</epage><pages>43-60</pages><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmc.2011.024.043</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2218 |
ispartof | Computers, materials & continua, 2011, Vol.24 (1), p.43-60 |
issn | 1546-2218 1546-2226 |
language | eng |
recordid | cdi_proquest_miscellaneous_963893441 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Coalescing COMPUTER SIMULATION CRYSTAL STRUCTURE DEFORMATION Evolution FAILURE Grain size GRAIN SIZE AND SHAPE Molecular dynamics Nanocrystals NUCLEATION Plastic deformation Strain STRAIN RATE Void fraction VOIDS |
title | Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Failure%20Behavior%20of%20Nanocrystalline%20Cu%20at%20Atomic%20Scales&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Dongare,%20A%20M&rft.date=2011&rft.volume=24&rft.issue=1&rft.spage=43&rft.epage=60&rft.pages=43-60&rft.issn=1546-2218&rft.eissn=1546-2226&rft_id=info:doi/10.3970/cmc.2011.024.043&rft_dat=%3Cproquest%3E963893441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396075107&rft_id=info:pmid/&rfr_iscdi=true |