Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales

Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2011, Vol.24 (1), p.43-60
Hauptverfasser: Dongare, A M, Rajendran, A M, Lamattina, B, Zikry, M A, Brenner, D W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 43
container_title Computers, materials & continua
container_volume 24
creator Dongare, A M
Rajendran, A M
Lamattina, B
Zikry, M A
Brenner, D W
description Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.
doi_str_mv 10.3970/cmc.2011.024.043
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_963893441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963893441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p215t-aedcb5696ffaa9fb5bcd67f4334e40e7b1ddc2b766f62efa4af9a3fc4fcd1fbb3</originalsourceid><addsrcrecordid>eNpdjj1PwzAURS0EEqWwM1piYErwV5x6QiVQQKpgAObo2XkWqZy4xAlS_z1FIAame4dzri4h55zl0pTsynUuF4zznAmVMyUPyIwXSmdCCH341_nimJyktGFMamnYjFzf7nroWkdX0IZpQHqD7_DZxoFGT5-gj27YpRFCaHuk1URhpMsxfgsvDgKmU3LkISQ8-805eVvdvVYP2fr5_rFarrOt4MWYATbOFtpo7wGMt4V1jS69klKhYlha3jRO2FJrrwV6UOANSO-Udw331so5ufzZ3Q7xY8I01l2bHIYAPcYp1UbLhZFK8T158Y_cxGno9-dqIY1mZcFZKb8AGEdaig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396075107</pqid></control><display><type>article</type><title>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dongare, A M ; Rajendran, A M ; Lamattina, B ; Zikry, M A ; Brenner, D W</creator><creatorcontrib>Dongare, A M ; Rajendran, A M ; Lamattina, B ; Zikry, M A ; Brenner, D W</creatorcontrib><description>Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.</description><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.3970/cmc.2011.024.043</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Coalescing ; COMPUTER SIMULATION ; CRYSTAL STRUCTURE ; DEFORMATION ; Evolution ; FAILURE ; Grain size ; GRAIN SIZE AND SHAPE ; Molecular dynamics ; Nanocrystals ; NUCLEATION ; Plastic deformation ; Strain ; STRAIN RATE ; Void fraction ; VOIDS</subject><ispartof>Computers, materials &amp; continua, 2011, Vol.24 (1), p.43-60</ispartof><rights>2011. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Dongare, A M</creatorcontrib><creatorcontrib>Rajendran, A M</creatorcontrib><creatorcontrib>Lamattina, B</creatorcontrib><creatorcontrib>Zikry, M A</creatorcontrib><creatorcontrib>Brenner, D W</creatorcontrib><title>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</title><title>Computers, materials &amp; continua</title><description>Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.</description><subject>Coalescing</subject><subject>COMPUTER SIMULATION</subject><subject>CRYSTAL STRUCTURE</subject><subject>DEFORMATION</subject><subject>Evolution</subject><subject>FAILURE</subject><subject>Grain size</subject><subject>GRAIN SIZE AND SHAPE</subject><subject>Molecular dynamics</subject><subject>Nanocrystals</subject><subject>NUCLEATION</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>STRAIN RATE</subject><subject>Void fraction</subject><subject>VOIDS</subject><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjj1PwzAURS0EEqWwM1piYErwV5x6QiVQQKpgAObo2XkWqZy4xAlS_z1FIAame4dzri4h55zl0pTsynUuF4zznAmVMyUPyIwXSmdCCH341_nimJyktGFMamnYjFzf7nroWkdX0IZpQHqD7_DZxoFGT5-gj27YpRFCaHuk1URhpMsxfgsvDgKmU3LkISQ8-805eVvdvVYP2fr5_rFarrOt4MWYATbOFtpo7wGMt4V1jS69klKhYlha3jRO2FJrrwV6UOANSO-Udw331so5ufzZ3Q7xY8I01l2bHIYAPcYp1UbLhZFK8T158Y_cxGno9-dqIY1mZcFZKb8AGEdaig</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Dongare, A M</creator><creator>Rajendran, A M</creator><creator>Lamattina, B</creator><creator>Zikry, M A</creator><creator>Brenner, D W</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>H8G</scope></search><sort><creationdate>2011</creationdate><title>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</title><author>Dongare, A M ; Rajendran, A M ; Lamattina, B ; Zikry, M A ; Brenner, D W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p215t-aedcb5696ffaa9fb5bcd67f4334e40e7b1ddc2b766f62efa4af9a3fc4fcd1fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coalescing</topic><topic>COMPUTER SIMULATION</topic><topic>CRYSTAL STRUCTURE</topic><topic>DEFORMATION</topic><topic>Evolution</topic><topic>FAILURE</topic><topic>Grain size</topic><topic>GRAIN SIZE AND SHAPE</topic><topic>Molecular dynamics</topic><topic>Nanocrystals</topic><topic>NUCLEATION</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>STRAIN RATE</topic><topic>Void fraction</topic><topic>VOIDS</topic><toplevel>online_resources</toplevel><creatorcontrib>Dongare, A M</creatorcontrib><creatorcontrib>Rajendran, A M</creatorcontrib><creatorcontrib>Lamattina, B</creatorcontrib><creatorcontrib>Zikry, M A</creatorcontrib><creatorcontrib>Brenner, D W</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Copper Technical Reference Library</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongare, A M</au><au>Rajendran, A M</au><au>Lamattina, B</au><au>Zikry, M A</au><au>Brenner, D W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2011</date><risdate>2011</risdate><volume>24</volume><issue>1</issue><spage>43</spage><epage>60</epage><pages>43-60</pages><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Large-scale molecular dynamics (MD) simulations are used to investigate the effects of microstructure and loading conditions on the dynamic failure behavior of nanocrystalline Cu. The nucleation, growth, and coalescence of voids is investigated for the nanocrystalline metal with average grain sizes ranging from 6 nm to 12 nm (inverse Hall-Petch regime) for conditions of uniaxial expansion at constant strain rates ranging from 4x107 s - 1 to 1010 s - 1. MD simulations suggest that the evolution of voids can be described in two stages: The first stage corresponds to the nucleation of voids and the fast linear initial growth of all the individual voids. The second stage of void growth corresponds to the steady (slower) growth and coalescence of the void aggregates/clusters. The evolution of void fraction is found to be strongly dependent on the loading strain rates, but is less dependent on the grain size of the nanocrystalline metal. Higher strain rates require larger plastic strains to nucleate voids, whereas the larger grain sizes require lower plastic strains to nucleate voids in the inverse Hall-Petch regime. The spall strength of the nanocrystalline metal is less affected by the grain size, but is strongly affected by the loading strain rates.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmc.2011.024.043</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2218
ispartof Computers, materials & continua, 2011, Vol.24 (1), p.43-60
issn 1546-2218
1546-2226
language eng
recordid cdi_proquest_miscellaneous_963893441
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Coalescing
COMPUTER SIMULATION
CRYSTAL STRUCTURE
DEFORMATION
Evolution
FAILURE
Grain size
GRAIN SIZE AND SHAPE
Molecular dynamics
Nanocrystals
NUCLEATION
Plastic deformation
Strain
STRAIN RATE
Void fraction
VOIDS
title Dynamic Failure Behavior of Nanocrystalline Cu at Atomic Scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Failure%20Behavior%20of%20Nanocrystalline%20Cu%20at%20Atomic%20Scales&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Dongare,%20A%20M&rft.date=2011&rft.volume=24&rft.issue=1&rft.spage=43&rft.epage=60&rft.pages=43-60&rft.issn=1546-2218&rft.eissn=1546-2226&rft_id=info:doi/10.3970/cmc.2011.024.043&rft_dat=%3Cproquest%3E963893441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396075107&rft_id=info:pmid/&rfr_iscdi=true