The effects of thermal treatment on the antioxidant activity of polyaniline

The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2011-12, Vol.96 (12), p.2159-2166
Hauptverfasser: Nand, Ashveen V., Ray, Sudip, Gizdavic-Nikolaidis, Marija, Travas-Sejdic, Jadranka, Kilmartin, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2166
container_issue 12
container_start_page 2159
container_title Polymer degradation and stability
container_volume 96
creator Nand, Ashveen V.
Ray, Sudip
Gizdavic-Nikolaidis, Marija
Travas-Sejdic, Jadranka
Kilmartin, Paul A.
description The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300 °C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300 °C for 30 min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300 °C. The ratios of the intensities ( Q/ B) of the predominantly quinonoid ( Q) and benzenoid peaks ( B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175 °C and were oxidized after treatment above 175 °C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200 °C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200 °C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.
doi_str_mv 10.1016/j.polymdegradstab.2011.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963888243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391011003168</els_id><sourcerecordid>963888243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhi3USmwpz0AuqKcEjx07zqGHChVaFamHwtmadSbgVRJvbYPYt6-jRT301LmMNPrmn9HH2CXwBjjoq12zD9NhHugx4pAybhvBARreNxzkCduA6WQtpIB3bMOhhVr2wE_Zh5R2vFSrYMN-3D9RReNILqcqjFV-ojjjVOVImGdachWWdVjhkn149UPpFbrsX3w-rAvrC7j4yS_0kb0fcUp0_tbP2MPN1_vrb_Xdz9vv11_uaqeEyDUNDk3XtaCV0qiNE3preK-VG7nQndj2oPUAQGqQndAOkFrqpXLCSGW0kmfs0zF3H8PvZ0rZzj45miZcKDwn22tpjBGtLOTnI-liSCnSaPfRzxgPFrhdHdqd_cehXR1a3tvisOxfvl3C5HAaIy7Op78hou0MaGgLd3HkRgwWH2NhHn6VIF00d5K3ohC3R4KKmBdP0SbnaXE0-Fjc2yH4__zpDx3Wme8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963888243</pqid></control><display><type>article</type><title>The effects of thermal treatment on the antioxidant activity of polyaniline</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nand, Ashveen V. ; Ray, Sudip ; Gizdavic-Nikolaidis, Marija ; Travas-Sejdic, Jadranka ; Kilmartin, Paul A.</creator><creatorcontrib>Nand, Ashveen V. ; Ray, Sudip ; Gizdavic-Nikolaidis, Marija ; Travas-Sejdic, Jadranka ; Kilmartin, Paul A.</creatorcontrib><description>The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300 °C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300 °C for 30 min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300 °C. The ratios of the intensities ( Q/ B) of the predominantly quinonoid ( Q) and benzenoid peaks ( B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175 °C and were oxidized after treatment above 175 °C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200 °C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200 °C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2011.09.013</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>2,2-diphenyl-1-picrylhydrazyl ; air ; antioxidant activity ; Antioxidants ; Applied sciences ; assays ; Benzenoids ; Chemical reactions and properties ; crosslinking ; Degradation ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; free radical scavengers ; Free radicals ; heat treatment ; hydrochloric acid ; Nanorods ; Nanostructure ; Organic polymers ; Oxidation ; Physicochemistry of polymers ; Polyaniline ; Polyanilines ; polymers ; powders ; Radical scavenging ; scanning electron microscopy ; Scavenging ; temperature ; thermal stability ; Thermal treatment ; thermogravimetry</subject><ispartof>Polymer degradation and stability, 2011-12, Vol.96 (12), p.2159-2166</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</citedby><cites>FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2011.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24781614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nand, Ashveen V.</creatorcontrib><creatorcontrib>Ray, Sudip</creatorcontrib><creatorcontrib>Gizdavic-Nikolaidis, Marija</creatorcontrib><creatorcontrib>Travas-Sejdic, Jadranka</creatorcontrib><creatorcontrib>Kilmartin, Paul A.</creatorcontrib><title>The effects of thermal treatment on the antioxidant activity of polyaniline</title><title>Polymer degradation and stability</title><description>The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300 °C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300 °C for 30 min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300 °C. The ratios of the intensities ( Q/ B) of the predominantly quinonoid ( Q) and benzenoid peaks ( B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175 °C and were oxidized after treatment above 175 °C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200 °C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200 °C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.</description><subject>2,2-diphenyl-1-picrylhydrazyl</subject><subject>air</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Applied sciences</subject><subject>assays</subject><subject>Benzenoids</subject><subject>Chemical reactions and properties</subject><subject>crosslinking</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>free radical scavengers</subject><subject>Free radicals</subject><subject>heat treatment</subject><subject>hydrochloric acid</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Organic polymers</subject><subject>Oxidation</subject><subject>Physicochemistry of polymers</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>polymers</subject><subject>powders</subject><subject>Radical scavenging</subject><subject>scanning electron microscopy</subject><subject>Scavenging</subject><subject>temperature</subject><subject>thermal stability</subject><subject>Thermal treatment</subject><subject>thermogravimetry</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAQhi3USmwpz0AuqKcEjx07zqGHChVaFamHwtmadSbgVRJvbYPYt6-jRT301LmMNPrmn9HH2CXwBjjoq12zD9NhHugx4pAybhvBARreNxzkCduA6WQtpIB3bMOhhVr2wE_Zh5R2vFSrYMN-3D9RReNILqcqjFV-ojjjVOVImGdachWWdVjhkn149UPpFbrsX3w-rAvrC7j4yS_0kb0fcUp0_tbP2MPN1_vrb_Xdz9vv11_uaqeEyDUNDk3XtaCV0qiNE3preK-VG7nQndj2oPUAQGqQndAOkFrqpXLCSGW0kmfs0zF3H8PvZ0rZzj45miZcKDwn22tpjBGtLOTnI-liSCnSaPfRzxgPFrhdHdqd_cehXR1a3tvisOxfvl3C5HAaIy7Op78hou0MaGgLd3HkRgwWH2NhHn6VIF00d5K3ohC3R4KKmBdP0SbnaXE0-Fjc2yH4__zpDx3Wme8</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Nand, Ashveen V.</creator><creator>Ray, Sudip</creator><creator>Gizdavic-Nikolaidis, Marija</creator><creator>Travas-Sejdic, Jadranka</creator><creator>Kilmartin, Paul A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>The effects of thermal treatment on the antioxidant activity of polyaniline</title><author>Nand, Ashveen V. ; Ray, Sudip ; Gizdavic-Nikolaidis, Marija ; Travas-Sejdic, Jadranka ; Kilmartin, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2,2-diphenyl-1-picrylhydrazyl</topic><topic>air</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Applied sciences</topic><topic>assays</topic><topic>Benzenoids</topic><topic>Chemical reactions and properties</topic><topic>crosslinking</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>free radical scavengers</topic><topic>Free radicals</topic><topic>heat treatment</topic><topic>hydrochloric acid</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Organic polymers</topic><topic>Oxidation</topic><topic>Physicochemistry of polymers</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>polymers</topic><topic>powders</topic><topic>Radical scavenging</topic><topic>scanning electron microscopy</topic><topic>Scavenging</topic><topic>temperature</topic><topic>thermal stability</topic><topic>Thermal treatment</topic><topic>thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nand, Ashveen V.</creatorcontrib><creatorcontrib>Ray, Sudip</creatorcontrib><creatorcontrib>Gizdavic-Nikolaidis, Marija</creatorcontrib><creatorcontrib>Travas-Sejdic, Jadranka</creatorcontrib><creatorcontrib>Kilmartin, Paul A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nand, Ashveen V.</au><au>Ray, Sudip</au><au>Gizdavic-Nikolaidis, Marija</au><au>Travas-Sejdic, Jadranka</au><au>Kilmartin, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of thermal treatment on the antioxidant activity of polyaniline</atitle><jtitle>Polymer degradation and stability</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>96</volume><issue>12</issue><spage>2159</spage><epage>2166</epage><pages>2159-2166</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300 °C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300 °C for 30 min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300 °C. The ratios of the intensities ( Q/ B) of the predominantly quinonoid ( Q) and benzenoid peaks ( B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175 °C and were oxidized after treatment above 175 °C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200 °C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200 °C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2011.09.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2011-12, Vol.96 (12), p.2159-2166
issn 0141-3910
1873-2321
language eng
recordid cdi_proquest_miscellaneous_963888243
source ScienceDirect Journals (5 years ago - present)
subjects 2,2-diphenyl-1-picrylhydrazyl
air
antioxidant activity
Antioxidants
Applied sciences
assays
Benzenoids
Chemical reactions and properties
crosslinking
Degradation
Exact sciences and technology
Fourier transform infrared spectroscopy
free radical scavengers
Free radicals
heat treatment
hydrochloric acid
Nanorods
Nanostructure
Organic polymers
Oxidation
Physicochemistry of polymers
Polyaniline
Polyanilines
polymers
powders
Radical scavenging
scanning electron microscopy
Scavenging
temperature
thermal stability
Thermal treatment
thermogravimetry
title The effects of thermal treatment on the antioxidant activity of polyaniline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20thermal%20treatment%20on%20the%20antioxidant%20activity%20of%20polyaniline&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Nand,%20Ashveen%20V.&rft.date=2011-12-01&rft.volume=96&rft.issue=12&rft.spage=2159&rft.epage=2166&rft.pages=2159-2166&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2011.09.013&rft_dat=%3Cproquest_cross%3E963888243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963888243&rft_id=info:pmid/&rft_els_id=S0141391011003168&rfr_iscdi=true