The effects of thermal treatment on the antioxidant activity of polyaniline
The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogra...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2011-12, Vol.96 (12), p.2159-2166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2166 |
---|---|
container_issue | 12 |
container_start_page | 2159 |
container_title | Polymer degradation and stability |
container_volume | 96 |
creator | Nand, Ashveen V. Ray, Sudip Gizdavic-Nikolaidis, Marija Travas-Sejdic, Jadranka Kilmartin, Paul A. |
description | The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300
°C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300
°C for 30
min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300
°C. The ratios of the intensities (
Q/
B) of the predominantly quinonoid (
Q) and benzenoid peaks (
B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175
°C and were oxidized after treatment above 175
°C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200
°C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200
°C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity. |
doi_str_mv | 10.1016/j.polymdegradstab.2011.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963888243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391011003168</els_id><sourcerecordid>963888243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhi3USmwpz0AuqKcEjx07zqGHChVaFamHwtmadSbgVRJvbYPYt6-jRT301LmMNPrmn9HH2CXwBjjoq12zD9NhHugx4pAybhvBARreNxzkCduA6WQtpIB3bMOhhVr2wE_Zh5R2vFSrYMN-3D9RReNILqcqjFV-ojjjVOVImGdachWWdVjhkn149UPpFbrsX3w-rAvrC7j4yS_0kb0fcUp0_tbP2MPN1_vrb_Xdz9vv11_uaqeEyDUNDk3XtaCV0qiNE3preK-VG7nQndj2oPUAQGqQndAOkFrqpXLCSGW0kmfs0zF3H8PvZ0rZzj45miZcKDwn22tpjBGtLOTnI-liSCnSaPfRzxgPFrhdHdqd_cehXR1a3tvisOxfvl3C5HAaIy7Op78hou0MaGgLd3HkRgwWH2NhHn6VIF00d5K3ohC3R4KKmBdP0SbnaXE0-Fjc2yH4__zpDx3Wme8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963888243</pqid></control><display><type>article</type><title>The effects of thermal treatment on the antioxidant activity of polyaniline</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nand, Ashveen V. ; Ray, Sudip ; Gizdavic-Nikolaidis, Marija ; Travas-Sejdic, Jadranka ; Kilmartin, Paul A.</creator><creatorcontrib>Nand, Ashveen V. ; Ray, Sudip ; Gizdavic-Nikolaidis, Marija ; Travas-Sejdic, Jadranka ; Kilmartin, Paul A.</creatorcontrib><description>The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300
°C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300
°C for 30
min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300
°C. The ratios of the intensities (
Q/
B) of the predominantly quinonoid (
Q) and benzenoid peaks (
B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175
°C and were oxidized after treatment above 175
°C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200
°C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200
°C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2011.09.013</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>2,2-diphenyl-1-picrylhydrazyl ; air ; antioxidant activity ; Antioxidants ; Applied sciences ; assays ; Benzenoids ; Chemical reactions and properties ; crosslinking ; Degradation ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; free radical scavengers ; Free radicals ; heat treatment ; hydrochloric acid ; Nanorods ; Nanostructure ; Organic polymers ; Oxidation ; Physicochemistry of polymers ; Polyaniline ; Polyanilines ; polymers ; powders ; Radical scavenging ; scanning electron microscopy ; Scavenging ; temperature ; thermal stability ; Thermal treatment ; thermogravimetry</subject><ispartof>Polymer degradation and stability, 2011-12, Vol.96 (12), p.2159-2166</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</citedby><cites>FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2011.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24781614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nand, Ashveen V.</creatorcontrib><creatorcontrib>Ray, Sudip</creatorcontrib><creatorcontrib>Gizdavic-Nikolaidis, Marija</creatorcontrib><creatorcontrib>Travas-Sejdic, Jadranka</creatorcontrib><creatorcontrib>Kilmartin, Paul A.</creatorcontrib><title>The effects of thermal treatment on the antioxidant activity of polyaniline</title><title>Polymer degradation and stability</title><description>The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300
°C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300
°C for 30
min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300
°C. The ratios of the intensities (
Q/
B) of the predominantly quinonoid (
Q) and benzenoid peaks (
B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175
°C and were oxidized after treatment above 175
°C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200
°C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200
°C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.</description><subject>2,2-diphenyl-1-picrylhydrazyl</subject><subject>air</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Applied sciences</subject><subject>assays</subject><subject>Benzenoids</subject><subject>Chemical reactions and properties</subject><subject>crosslinking</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>free radical scavengers</subject><subject>Free radicals</subject><subject>heat treatment</subject><subject>hydrochloric acid</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Organic polymers</subject><subject>Oxidation</subject><subject>Physicochemistry of polymers</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>polymers</subject><subject>powders</subject><subject>Radical scavenging</subject><subject>scanning electron microscopy</subject><subject>Scavenging</subject><subject>temperature</subject><subject>thermal stability</subject><subject>Thermal treatment</subject><subject>thermogravimetry</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAQhi3USmwpz0AuqKcEjx07zqGHChVaFamHwtmadSbgVRJvbYPYt6-jRT301LmMNPrmn9HH2CXwBjjoq12zD9NhHugx4pAybhvBARreNxzkCduA6WQtpIB3bMOhhVr2wE_Zh5R2vFSrYMN-3D9RReNILqcqjFV-ojjjVOVImGdachWWdVjhkn149UPpFbrsX3w-rAvrC7j4yS_0kb0fcUp0_tbP2MPN1_vrb_Xdz9vv11_uaqeEyDUNDk3XtaCV0qiNE3preK-VG7nQndj2oPUAQGqQndAOkFrqpXLCSGW0kmfs0zF3H8PvZ0rZzj45miZcKDwn22tpjBGtLOTnI-liSCnSaPfRzxgPFrhdHdqd_cehXR1a3tvisOxfvl3C5HAaIy7Op78hou0MaGgLd3HkRgwWH2NhHn6VIF00d5K3ohC3R4KKmBdP0SbnaXE0-Fjc2yH4__zpDx3Wme8</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Nand, Ashveen V.</creator><creator>Ray, Sudip</creator><creator>Gizdavic-Nikolaidis, Marija</creator><creator>Travas-Sejdic, Jadranka</creator><creator>Kilmartin, Paul A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>The effects of thermal treatment on the antioxidant activity of polyaniline</title><author>Nand, Ashveen V. ; Ray, Sudip ; Gizdavic-Nikolaidis, Marija ; Travas-Sejdic, Jadranka ; Kilmartin, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-edca877416556a68c26b80965cf02672b9166d11e5d3726c1ae4e935c28358653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2,2-diphenyl-1-picrylhydrazyl</topic><topic>air</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Applied sciences</topic><topic>assays</topic><topic>Benzenoids</topic><topic>Chemical reactions and properties</topic><topic>crosslinking</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>free radical scavengers</topic><topic>Free radicals</topic><topic>heat treatment</topic><topic>hydrochloric acid</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Organic polymers</topic><topic>Oxidation</topic><topic>Physicochemistry of polymers</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>polymers</topic><topic>powders</topic><topic>Radical scavenging</topic><topic>scanning electron microscopy</topic><topic>Scavenging</topic><topic>temperature</topic><topic>thermal stability</topic><topic>Thermal treatment</topic><topic>thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nand, Ashveen V.</creatorcontrib><creatorcontrib>Ray, Sudip</creatorcontrib><creatorcontrib>Gizdavic-Nikolaidis, Marija</creatorcontrib><creatorcontrib>Travas-Sejdic, Jadranka</creatorcontrib><creatorcontrib>Kilmartin, Paul A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nand, Ashveen V.</au><au>Ray, Sudip</au><au>Gizdavic-Nikolaidis, Marija</au><au>Travas-Sejdic, Jadranka</au><au>Kilmartin, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of thermal treatment on the antioxidant activity of polyaniline</atitle><jtitle>Polymer degradation and stability</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>96</volume><issue>12</issue><spage>2159</spage><epage>2166</epage><pages>2159-2166</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200–300
°C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300
°C for 30
min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300
°C. The ratios of the intensities (
Q/
B) of the predominantly quinonoid (
Q) and benzenoid peaks (
B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175
°C and were oxidized after treatment above 175
°C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200
°C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200
°C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2011.09.013</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2011-12, Vol.96 (12), p.2159-2166 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_proquest_miscellaneous_963888243 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 2,2-diphenyl-1-picrylhydrazyl air antioxidant activity Antioxidants Applied sciences assays Benzenoids Chemical reactions and properties crosslinking Degradation Exact sciences and technology Fourier transform infrared spectroscopy free radical scavengers Free radicals heat treatment hydrochloric acid Nanorods Nanostructure Organic polymers Oxidation Physicochemistry of polymers Polyaniline Polyanilines polymers powders Radical scavenging scanning electron microscopy Scavenging temperature thermal stability Thermal treatment thermogravimetry |
title | The effects of thermal treatment on the antioxidant activity of polyaniline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20thermal%20treatment%20on%20the%20antioxidant%20activity%20of%20polyaniline&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Nand,%20Ashveen%20V.&rft.date=2011-12-01&rft.volume=96&rft.issue=12&rft.spage=2159&rft.epage=2166&rft.pages=2159-2166&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2011.09.013&rft_dat=%3Cproquest_cross%3E963888243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963888243&rft_id=info:pmid/&rft_els_id=S0141391011003168&rfr_iscdi=true |