Soft rough fuzzy sets and soft fuzzy rough sets
Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2011-12, Vol.62 (12), p.4635-4645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4645 |
---|---|
container_issue | 12 |
container_start_page | 4635 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 62 |
creator | Meng, Dan Zhang, Xiaohong Qin, Keyun |
description | Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed. |
doi_str_mv | 10.1016/j.camwa.2011.10.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963883555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111009138</els_id><sourcerecordid>963883555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iyMSW9sxvHHhhQBQWpEgMwW45zhlRtU-wE1P56EsLMdNL7Jd3D2DVChoByts6c3X7bjANir2Qw1ydsgqoQaSGlOmUTUFqlyDmes4sY1wAwFxwmbPbS-DYJTff-kfjueDwkkdqY2F2VxMEZtdEfnEt25u0m0tXfnbK3h_vXxWO6el4-Le5WqRMK2lQRea-l5xqELoALa0skzyuU2peFoJxzIFmqUgIJxbEkdBWQhRyBkxRTdjPu7kPz2VFszbaOjjYbu6Omi0ZLoZTI87xPijHpQhNjIG_2od7acDAIZqBj1uaXjhnoDGJPp2_dji3qn_iqKZjoato5qupArjVVU__b_wFFi24H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963883555</pqid></control><display><type>article</type><title>Soft rough fuzzy sets and soft fuzzy rough sets</title><source>Elsevier ScienceDirect</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Meng, Dan ; Zhang, Xiaohong ; Qin, Keyun</creator><creatorcontrib>Meng, Dan ; Zhang, Xiaohong ; Qin, Keyun</creatorcontrib><description>Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.10.049</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Fuzzy ; Fuzzy logic ; Fuzzy set ; Fuzzy set theory ; Mathematical analysis ; Mathematical models ; Rough set ; Set theory ; Soft fuzzy rough set ; Soft rough fuzzy set ; Soft rough set ; Soft set ; Universe</subject><ispartof>Computers & mathematics with applications (1987), 2011-12, Vol.62 (12), p.4635-4645</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</citedby><cites>FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2011.10.049$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Meng, Dan</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Qin, Keyun</creatorcontrib><title>Soft rough fuzzy sets and soft fuzzy rough sets</title><title>Computers & mathematics with applications (1987)</title><description>Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.</description><subject>Approximation</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set</subject><subject>Fuzzy set theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Rough set</subject><subject>Set theory</subject><subject>Soft fuzzy rough set</subject><subject>Soft rough fuzzy set</subject><subject>Soft rough set</subject><subject>Soft set</subject><subject>Universe</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iyMSW9sxvHHhhQBQWpEgMwW45zhlRtU-wE1P56EsLMdNL7Jd3D2DVChoByts6c3X7bjANir2Qw1ydsgqoQaSGlOmUTUFqlyDmes4sY1wAwFxwmbPbS-DYJTff-kfjueDwkkdqY2F2VxMEZtdEfnEt25u0m0tXfnbK3h_vXxWO6el4-Le5WqRMK2lQRea-l5xqELoALa0skzyuU2peFoJxzIFmqUgIJxbEkdBWQhRyBkxRTdjPu7kPz2VFszbaOjjYbu6Omi0ZLoZTI87xPijHpQhNjIG_2od7acDAIZqBj1uaXjhnoDGJPp2_dji3qn_iqKZjoato5qupArjVVU__b_wFFi24H</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Meng, Dan</creator><creator>Zhang, Xiaohong</creator><creator>Qin, Keyun</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Soft rough fuzzy sets and soft fuzzy rough sets</title><author>Meng, Dan ; Zhang, Xiaohong ; Qin, Keyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set</topic><topic>Fuzzy set theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Rough set</topic><topic>Set theory</topic><topic>Soft fuzzy rough set</topic><topic>Soft rough fuzzy set</topic><topic>Soft rough set</topic><topic>Soft set</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Dan</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Qin, Keyun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Dan</au><au>Zhang, Xiaohong</au><au>Qin, Keyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft rough fuzzy sets and soft fuzzy rough sets</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>62</volume><issue>12</issue><spage>4635</spage><epage>4645</epage><pages>4635-4645</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.10.049</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2011-12, Vol.62 (12), p.4635-4645 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_963883555 |
source | Elsevier ScienceDirect; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Fuzzy Fuzzy logic Fuzzy set Fuzzy set theory Mathematical analysis Mathematical models Rough set Set theory Soft fuzzy rough set Soft rough fuzzy set Soft rough set Soft set Universe |
title | Soft rough fuzzy sets and soft fuzzy rough sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20rough%20fuzzy%20sets%20and%20soft%20fuzzy%20rough%20sets&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Meng,%20Dan&rft.date=2011-12-01&rft.volume=62&rft.issue=12&rft.spage=4635&rft.epage=4645&rft.pages=4635-4645&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.10.049&rft_dat=%3Cproquest_cross%3E963883555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963883555&rft_id=info:pmid/&rft_els_id=S0898122111009138&rfr_iscdi=true |