Soft rough fuzzy sets and soft fuzzy rough sets

Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2011-12, Vol.62 (12), p.4635-4645
Hauptverfasser: Meng, Dan, Zhang, Xiaohong, Qin, Keyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4645
container_issue 12
container_start_page 4635
container_title Computers & mathematics with applications (1987)
container_volume 62
creator Meng, Dan
Zhang, Xiaohong
Qin, Keyun
description Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.
doi_str_mv 10.1016/j.camwa.2011.10.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963883555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111009138</els_id><sourcerecordid>963883555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iyMSW9sxvHHhhQBQWpEgMwW45zhlRtU-wE1P56EsLMdNL7Jd3D2DVChoByts6c3X7bjANir2Qw1ydsgqoQaSGlOmUTUFqlyDmes4sY1wAwFxwmbPbS-DYJTff-kfjueDwkkdqY2F2VxMEZtdEfnEt25u0m0tXfnbK3h_vXxWO6el4-Le5WqRMK2lQRea-l5xqELoALa0skzyuU2peFoJxzIFmqUgIJxbEkdBWQhRyBkxRTdjPu7kPz2VFszbaOjjYbu6Omi0ZLoZTI87xPijHpQhNjIG_2od7acDAIZqBj1uaXjhnoDGJPp2_dji3qn_iqKZjoato5qupArjVVU__b_wFFi24H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963883555</pqid></control><display><type>article</type><title>Soft rough fuzzy sets and soft fuzzy rough sets</title><source>Elsevier ScienceDirect</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Meng, Dan ; Zhang, Xiaohong ; Qin, Keyun</creator><creatorcontrib>Meng, Dan ; Zhang, Xiaohong ; Qin, Keyun</creatorcontrib><description>Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.10.049</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Fuzzy ; Fuzzy logic ; Fuzzy set ; Fuzzy set theory ; Mathematical analysis ; Mathematical models ; Rough set ; Set theory ; Soft fuzzy rough set ; Soft rough fuzzy set ; Soft rough set ; Soft set ; Universe</subject><ispartof>Computers &amp; mathematics with applications (1987), 2011-12, Vol.62 (12), p.4635-4645</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</citedby><cites>FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2011.10.049$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Meng, Dan</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Qin, Keyun</creatorcontrib><title>Soft rough fuzzy sets and soft fuzzy rough sets</title><title>Computers &amp; mathematics with applications (1987)</title><description>Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.</description><subject>Approximation</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set</subject><subject>Fuzzy set theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Rough set</subject><subject>Set theory</subject><subject>Soft fuzzy rough set</subject><subject>Soft rough fuzzy set</subject><subject>Soft rough set</subject><subject>Soft set</subject><subject>Universe</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iyMSW9sxvHHhhQBQWpEgMwW45zhlRtU-wE1P56EsLMdNL7Jd3D2DVChoByts6c3X7bjANir2Qw1ydsgqoQaSGlOmUTUFqlyDmes4sY1wAwFxwmbPbS-DYJTff-kfjueDwkkdqY2F2VxMEZtdEfnEt25u0m0tXfnbK3h_vXxWO6el4-Le5WqRMK2lQRea-l5xqELoALa0skzyuU2peFoJxzIFmqUgIJxbEkdBWQhRyBkxRTdjPu7kPz2VFszbaOjjYbu6Omi0ZLoZTI87xPijHpQhNjIG_2od7acDAIZqBj1uaXjhnoDGJPp2_dji3qn_iqKZjoato5qupArjVVU__b_wFFi24H</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Meng, Dan</creator><creator>Zhang, Xiaohong</creator><creator>Qin, Keyun</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Soft rough fuzzy sets and soft fuzzy rough sets</title><author>Meng, Dan ; Zhang, Xiaohong ; Qin, Keyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8eeff96f290397023aab1ef2d169fb73e5220e6b8b60e3821be1cd0ea05102e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set</topic><topic>Fuzzy set theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Rough set</topic><topic>Set theory</topic><topic>Soft fuzzy rough set</topic><topic>Soft rough fuzzy set</topic><topic>Soft rough set</topic><topic>Soft set</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Dan</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Qin, Keyun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Dan</au><au>Zhang, Xiaohong</au><au>Qin, Keyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft rough fuzzy sets and soft fuzzy rough sets</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>62</volume><issue>12</issue><spage>4635</spage><epage>4645</epage><pages>4635-4645</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Fuzzy set theory, soft set theory and rough set theory are mathematical tools for dealing with uncertainties and are closely related. Feng et al. introduced the notions of rough soft set, soft rough set and soft rough fuzzy set by combining fuzzy set, rough set and soft set all together. This paper is devoted to the further discussion of the combinations of fuzzy set, rough set and soft set. A new soft rough set model is proposed and its properties are derived. Furthermore, fuzzy soft set is employed to granulate the universe of discourse and a more general model called soft fuzzy rough set is established. The lower and upper approximation operators are presented and their related properties are surveyed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.10.049</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2011-12, Vol.62 (12), p.4635-4645
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_963883555
source Elsevier ScienceDirect; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Fuzzy
Fuzzy logic
Fuzzy set
Fuzzy set theory
Mathematical analysis
Mathematical models
Rough set
Set theory
Soft fuzzy rough set
Soft rough fuzzy set
Soft rough set
Soft set
Universe
title Soft rough fuzzy sets and soft fuzzy rough sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20rough%20fuzzy%20sets%20and%20soft%20fuzzy%20rough%20sets&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Meng,%20Dan&rft.date=2011-12-01&rft.volume=62&rft.issue=12&rft.spage=4635&rft.epage=4645&rft.pages=4635-4645&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.10.049&rft_dat=%3Cproquest_cross%3E963883555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963883555&rft_id=info:pmid/&rft_els_id=S0898122111009138&rfr_iscdi=true