Design optimization of a damped hybrid vibration absorber

In this article, the H ∞ optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2012-02, Vol.331 (4), p.750-766
Hauptverfasser: Cheung, Y.L., Wong, W.O., Cheng, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 4
container_start_page 750
container_title Journal of sound and vibration
container_volume 331
creator Cheung, Y.L.
Wong, W.O.
Cheng, L.
description In this article, the H ∞ optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tuning parameters are the feedback gain, the tuning frequency, damping and mass ratios of the absorber. The effects of these parameters on the vibration reduction of the primary structure are revealed based on the analytical model. Design parameters of both passive and active elements of the HVA are optimized for the minimization of the resonant vibration amplitude of the primary system. One of the inherent limitations of the traditional passive vibration absorber is that its vibration absorption is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The proposed HVA overcomes this limitation and provides very good vibration reduction performance even at a low mass ratio. The proposed optimized HVA is compared to a recently published HVA designed for similar propose and it shows that the present design requires less energy for the active element of the HVA than the compared design.
doi_str_mv 10.1016/j.jsv.2011.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963883157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X11007978</els_id><sourcerecordid>963883157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-2fbe9e13555c852b040c3e165b352d2563d850ba198192c3babf7f90007ab4853</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_wNteRC-7TpJNNsGT1E8oeFHwFpJsVlPabk22hfrrzbLFY-npZWae-WBehC4xFBgwv50Vs7gpCGCc4iLJERphkCwXjItjNAIgJC85fJ6isxhnACBLWo6QfHDRfy2zdtX5hf_VnW9T0GQ6q_Vi5erse2uCr7ONN2EoahPbYFw4RyeNnkd3sdMx-nh6fJ-85NO359fJ_TS3DKDLSWOcdJgyxqxgxEAJljrMmaGM1IRxWgsGRmMpsCSWGm2aqpHpwEqbUjA6RtfD3FVof9Yudmrho3XzuV66dh2V5FQIill1EMlKRmgib_aSuOIEE06xPBAlIHoUD6gNbYzBNWoV_EKHrcKgepfUTCWXVO9Sn0qSeq5243W0et4EvbQ-_jeSspJcSJK4u4Fz6dUb74KK1ruldbUPznaqbv2eLX_fDaSf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762122089</pqid></control><display><type>article</type><title>Design optimization of a damped hybrid vibration absorber</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cheung, Y.L. ; Wong, W.O. ; Cheng, L.</creator><creatorcontrib>Cheung, Y.L. ; Wong, W.O. ; Cheng, L.</creatorcontrib><description>In this article, the H ∞ optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tuning parameters are the feedback gain, the tuning frequency, damping and mass ratios of the absorber. The effects of these parameters on the vibration reduction of the primary structure are revealed based on the analytical model. Design parameters of both passive and active elements of the HVA are optimized for the minimization of the resonant vibration amplitude of the primary system. One of the inherent limitations of the traditional passive vibration absorber is that its vibration absorption is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The proposed HVA overcomes this limitation and provides very good vibration reduction performance even at a low mass ratio. The proposed optimized HVA is compared to a recently published HVA designed for similar propose and it shows that the present design requires less energy for the active element of the HVA than the compared design.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2011.10.011</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Design engineering ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mass ratios ; Mathematical analysis ; Minimization ; Optimization ; Physics ; Reduction ; Solid mechanics ; Structural and continuum mechanics ; Tuning ; Vibration ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2012-02, Vol.331 (4), p.750-766</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-2fbe9e13555c852b040c3e165b352d2563d850ba198192c3babf7f90007ab4853</citedby><cites>FETCH-LOGICAL-c500t-2fbe9e13555c852b040c3e165b352d2563d850ba198192c3babf7f90007ab4853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2011.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24796892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheung, Y.L.</creatorcontrib><creatorcontrib>Wong, W.O.</creatorcontrib><creatorcontrib>Cheng, L.</creatorcontrib><title>Design optimization of a damped hybrid vibration absorber</title><title>Journal of sound and vibration</title><description>In this article, the H ∞ optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tuning parameters are the feedback gain, the tuning frequency, damping and mass ratios of the absorber. The effects of these parameters on the vibration reduction of the primary structure are revealed based on the analytical model. Design parameters of both passive and active elements of the HVA are optimized for the minimization of the resonant vibration amplitude of the primary system. One of the inherent limitations of the traditional passive vibration absorber is that its vibration absorption is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The proposed HVA overcomes this limitation and provides very good vibration reduction performance even at a low mass ratio. The proposed optimized HVA is compared to a recently published HVA designed for similar propose and it shows that the present design requires less energy for the active element of the HVA than the compared design.</description><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mass ratios</subject><subject>Mathematical analysis</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Physics</subject><subject>Reduction</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Tuning</subject><subject>Vibration</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMoWKs_wNteRC-7TpJNNsGT1E8oeFHwFpJsVlPabk22hfrrzbLFY-npZWae-WBehC4xFBgwv50Vs7gpCGCc4iLJERphkCwXjItjNAIgJC85fJ6isxhnACBLWo6QfHDRfy2zdtX5hf_VnW9T0GQ6q_Vi5erse2uCr7ONN2EoahPbYFw4RyeNnkd3sdMx-nh6fJ-85NO359fJ_TS3DKDLSWOcdJgyxqxgxEAJljrMmaGM1IRxWgsGRmMpsCSWGm2aqpHpwEqbUjA6RtfD3FVof9Yudmrho3XzuV66dh2V5FQIill1EMlKRmgib_aSuOIEE06xPBAlIHoUD6gNbYzBNWoV_EKHrcKgepfUTCWXVO9Sn0qSeq5243W0et4EvbQ-_jeSspJcSJK4u4Fz6dUb74KK1ruldbUPznaqbv2eLX_fDaSf</recordid><startdate>20120213</startdate><enddate>20120213</enddate><creator>Cheung, Y.L.</creator><creator>Wong, W.O.</creator><creator>Cheng, L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120213</creationdate><title>Design optimization of a damped hybrid vibration absorber</title><author>Cheung, Y.L. ; Wong, W.O. ; Cheng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-2fbe9e13555c852b040c3e165b352d2563d850ba198192c3babf7f90007ab4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mass ratios</topic><topic>Mathematical analysis</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Physics</topic><topic>Reduction</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Tuning</topic><topic>Vibration</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, Y.L.</creatorcontrib><creatorcontrib>Wong, W.O.</creatorcontrib><creatorcontrib>Cheng, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheung, Y.L.</au><au>Wong, W.O.</au><au>Cheng, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimization of a damped hybrid vibration absorber</atitle><jtitle>Journal of sound and vibration</jtitle><date>2012-02-13</date><risdate>2012</risdate><volume>331</volume><issue>4</issue><spage>750</spage><epage>766</epage><pages>750-766</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>In this article, the H ∞ optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tuning parameters are the feedback gain, the tuning frequency, damping and mass ratios of the absorber. The effects of these parameters on the vibration reduction of the primary structure are revealed based on the analytical model. Design parameters of both passive and active elements of the HVA are optimized for the minimization of the resonant vibration amplitude of the primary system. One of the inherent limitations of the traditional passive vibration absorber is that its vibration absorption is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The proposed HVA overcomes this limitation and provides very good vibration reduction performance even at a low mass ratio. The proposed optimized HVA is compared to a recently published HVA designed for similar propose and it shows that the present design requires less energy for the active element of the HVA than the compared design.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2011.10.011</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2012-02, Vol.331 (4), p.750-766
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_963883157
source ScienceDirect Journals (5 years ago - present)
subjects Design engineering
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mass ratios
Mathematical analysis
Minimization
Optimization
Physics
Reduction
Solid mechanics
Structural and continuum mechanics
Tuning
Vibration
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Design optimization of a damped hybrid vibration absorber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimization%20of%20a%20damped%20hybrid%20vibration%20absorber&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Cheung,%20Y.L.&rft.date=2012-02-13&rft.volume=331&rft.issue=4&rft.spage=750&rft.epage=766&rft.pages=750-766&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2011.10.011&rft_dat=%3Cproquest_cross%3E963883157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762122089&rft_id=info:pmid/&rft_els_id=S0022460X11007978&rfr_iscdi=true