Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid

A numerical study of laminar mixed convection in a two-sided lid-driven cavity filled with a water–Al 2O 3 nanofluid is presented. The top and bottom walls of the cavity are kept at different temperatures and can slide in the same or opposite direction. The vertical walls are thermally insulated. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences 2012-02, Vol.52, p.102-111
Hauptverfasser: Aminossadati, S.M., Kargar, A., Ghasemi, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 102
container_title International journal of thermal sciences
container_volume 52
creator Aminossadati, S.M.
Kargar, A.
Ghasemi, B.
description A numerical study of laminar mixed convection in a two-sided lid-driven cavity filled with a water–Al 2O 3 nanofluid is presented. The top and bottom walls of the cavity are kept at different temperatures and can slide in the same or opposite direction. The vertical walls are thermally insulated. An Adaptive Network-based Fuzzy Inference System (ANFIS) approach is developed, trained and validated using the results of a Computational Fluid Dynamics (CFD) analysis. The results show that ANFIS can successfully be used to predict the fluid velocity and temperature as well as the heat transfer rate of the cavity, with reduced computation time and without compromising the accuracy. ► Nanofluid laminar mixed convection in a two-sided lid-driven cavity is studied. ► ANFIS and CFD are used to examine the thermal behaviour of cavity. ► Computation time is reduced by using ANFIS without compromising accuracy. ► Higher heat transfer rates at higher values of ϕ and lower values of Ri. ► Heat transfer enhancement is a function of aspect ratio and lid-driven direction.
doi_str_mv 10.1016/j.ijthermalsci.2011.09.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963882371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072911002730</els_id><sourcerecordid>963882371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-cefe7d5f5bf6e4b1601ea54f933bf69afea72dc76600c3a281c711d1895ec0a43</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhiNEJUrhP1hIiFPCOF-OuVWlBaRKXOBsee2xOotjL3Z2S3rtH69XWyGOnGx5Hr8z81TVOw4NBz5-3Da0Xe4wzdpnQ00LnDcgG4D-RXXOhZjqno_jy3JvJdQgWvmqep3zFgCEBHlePV5avVvogCzgch_Tr3qjM1rm9g8PK6PgMGEwyPKaF5yZDtqvmTKLjs30p4AmhgOahWIoNNOshNSZbKl4srVNJTowow-0rMyR96VwT8tdIYMO0fk92TfVmSvz49vn86L6eXP94-prffv9y7ery9vadNO41AYdCju4YeNG7Dd8BI566J3suvIitUMtWmvEOAKYTrcTN4Jzyyc5oAHddxfVh1PuLsXfe8yLmikb9F4HjPus5NhNU9sJXshPJ9KkmHNCp3aJZp1WxUEdxaut-le8OopXIFURXz6_f26js9HeJR0M5b8J7dADtIMo3OcTh2XnA2FSJeko21IqRpWN9D_tngB7gKP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963882371</pqid></control><display><type>article</type><title>Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid</title><source>Elsevier ScienceDirect Journals</source><creator>Aminossadati, S.M. ; Kargar, A. ; Ghasemi, B.</creator><creatorcontrib>Aminossadati, S.M. ; Kargar, A. ; Ghasemi, B.</creatorcontrib><description>A numerical study of laminar mixed convection in a two-sided lid-driven cavity filled with a water–Al 2O 3 nanofluid is presented. The top and bottom walls of the cavity are kept at different temperatures and can slide in the same or opposite direction. The vertical walls are thermally insulated. An Adaptive Network-based Fuzzy Inference System (ANFIS) approach is developed, trained and validated using the results of a Computational Fluid Dynamics (CFD) analysis. The results show that ANFIS can successfully be used to predict the fluid velocity and temperature as well as the heat transfer rate of the cavity, with reduced computation time and without compromising the accuracy. ► Nanofluid laminar mixed convection in a two-sided lid-driven cavity is studied. ► ANFIS and CFD are used to examine the thermal behaviour of cavity. ► Computation time is reduced by using ANFIS without compromising accuracy. ► Higher heat transfer rates at higher values of ϕ and lower values of Ri. ► Heat transfer enhancement is a function of aspect ratio and lid-driven direction.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2011.09.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Adaptive systems ; ANFIS ; Applied sciences ; Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Fuzzy ; General and physical chemistry ; Heat transfer ; Holes ; Inference ; Laminar flows ; Laminar flows in cavities ; Lid-driven cavity ; Mixed convection ; Nanofluids ; Nanomaterials ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Richardson number ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Walls</subject><ispartof>International journal of thermal sciences, 2012-02, Vol.52, p.102-111</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-cefe7d5f5bf6e4b1601ea54f933bf69afea72dc76600c3a281c711d1895ec0a43</citedby><cites>FETCH-LOGICAL-c386t-cefe7d5f5bf6e4b1601ea54f933bf69afea72dc76600c3a281c711d1895ec0a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1290072911002730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25400257$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aminossadati, S.M.</creatorcontrib><creatorcontrib>Kargar, A.</creatorcontrib><creatorcontrib>Ghasemi, B.</creatorcontrib><title>Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid</title><title>International journal of thermal sciences</title><description>A numerical study of laminar mixed convection in a two-sided lid-driven cavity filled with a water–Al 2O 3 nanofluid is presented. The top and bottom walls of the cavity are kept at different temperatures and can slide in the same or opposite direction. The vertical walls are thermally insulated. An Adaptive Network-based Fuzzy Inference System (ANFIS) approach is developed, trained and validated using the results of a Computational Fluid Dynamics (CFD) analysis. The results show that ANFIS can successfully be used to predict the fluid velocity and temperature as well as the heat transfer rate of the cavity, with reduced computation time and without compromising the accuracy. ► Nanofluid laminar mixed convection in a two-sided lid-driven cavity is studied. ► ANFIS and CFD are used to examine the thermal behaviour of cavity. ► Computation time is reduced by using ANFIS without compromising accuracy. ► Higher heat transfer rates at higher values of ϕ and lower values of Ri. ► Heat transfer enhancement is a function of aspect ratio and lid-driven direction.</description><subject>Adaptive systems</subject><subject>ANFIS</subject><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fuzzy</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Inference</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Lid-driven cavity</subject><subject>Mixed convection</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Richardson number</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Walls</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAQhiNEJUrhP1hIiFPCOF-OuVWlBaRKXOBsee2xOotjL3Z2S3rtH69XWyGOnGx5Hr8z81TVOw4NBz5-3Da0Xe4wzdpnQ00LnDcgG4D-RXXOhZjqno_jy3JvJdQgWvmqep3zFgCEBHlePV5avVvogCzgch_Tr3qjM1rm9g8PK6PgMGEwyPKaF5yZDtqvmTKLjs30p4AmhgOahWIoNNOshNSZbKl4srVNJTowow-0rMyR96VwT8tdIYMO0fk92TfVmSvz49vn86L6eXP94-prffv9y7ery9vadNO41AYdCju4YeNG7Dd8BI566J3suvIitUMtWmvEOAKYTrcTN4Jzyyc5oAHddxfVh1PuLsXfe8yLmikb9F4HjPus5NhNU9sJXshPJ9KkmHNCp3aJZp1WxUEdxaut-le8OopXIFURXz6_f26js9HeJR0M5b8J7dADtIMo3OcTh2XnA2FSJeko21IqRpWN9D_tngB7gKP8</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Aminossadati, S.M.</creator><creator>Kargar, A.</creator><creator>Ghasemi, B.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid</title><author>Aminossadati, S.M. ; Kargar, A. ; Ghasemi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-cefe7d5f5bf6e4b1601ea54f933bf69afea72dc76600c3a281c711d1895ec0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive systems</topic><topic>ANFIS</topic><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fuzzy</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Inference</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Lid-driven cavity</topic><topic>Mixed convection</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Richardson number</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aminossadati, S.M.</creatorcontrib><creatorcontrib>Kargar, A.</creatorcontrib><creatorcontrib>Ghasemi, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aminossadati, S.M.</au><au>Kargar, A.</au><au>Ghasemi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid</atitle><jtitle>International journal of thermal sciences</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>52</volume><spage>102</spage><epage>111</epage><pages>102-111</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>A numerical study of laminar mixed convection in a two-sided lid-driven cavity filled with a water–Al 2O 3 nanofluid is presented. The top and bottom walls of the cavity are kept at different temperatures and can slide in the same or opposite direction. The vertical walls are thermally insulated. An Adaptive Network-based Fuzzy Inference System (ANFIS) approach is developed, trained and validated using the results of a Computational Fluid Dynamics (CFD) analysis. The results show that ANFIS can successfully be used to predict the fluid velocity and temperature as well as the heat transfer rate of the cavity, with reduced computation time and without compromising the accuracy. ► Nanofluid laminar mixed convection in a two-sided lid-driven cavity is studied. ► ANFIS and CFD are used to examine the thermal behaviour of cavity. ► Computation time is reduced by using ANFIS without compromising accuracy. ► Higher heat transfer rates at higher values of ϕ and lower values of Ri. ► Heat transfer enhancement is a function of aspect ratio and lid-driven direction.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2011.09.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2012-02, Vol.52, p.102-111
issn 1290-0729
1778-4166
language eng
recordid cdi_proquest_miscellaneous_963882371
source Elsevier ScienceDirect Journals
subjects Adaptive systems
ANFIS
Applied sciences
Chemistry
Colloidal state and disperse state
Computational fluid dynamics
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Fuzzy
General and physical chemistry
Heat transfer
Holes
Inference
Laminar flows
Laminar flows in cavities
Lid-driven cavity
Mixed convection
Nanofluids
Nanomaterials
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Richardson number
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Walls
title Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20network-based%20fuzzy%20inference%20system%20analysis%20of%20mixed%20convection%20in%20a%20two-sided%20lid-driven%20cavity%20filled%20with%20a%20nanofluid&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Aminossadati,%20S.M.&rft.date=2012-02-01&rft.volume=52&rft.spage=102&rft.epage=111&rft.pages=102-111&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2011.09.004&rft_dat=%3Cproquest_cross%3E963882371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963882371&rft_id=info:pmid/&rft_els_id=S1290072911002730&rfr_iscdi=true