Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading

The thermal performance of a miniature, three-dimensional flat-plate oscillating heat pipe (3D FP-OHP) was experimentally investigated during high-gravity loading with nonfavorable evaporator positioning. The heat pipe had dimensions of 3.0 × 3.0 × 0.254 cm3 and utilized a novel design concept incor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2011-10, Vol.133 (10)
Hauptverfasser: Thompson, S. M., Hathaway, A. A., Smoot, C. D., Wilson, C. A., Ma, H. B., Young, R. M., Greenberg, L., Osick, B. R., Campen, S. Van, Morgan, B. C., Sharar, D., Jankowski, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermal performance of a miniature, three-dimensional flat-plate oscillating heat pipe (3D FP-OHP) was experimentally investigated during high-gravity loading with nonfavorable evaporator positioning. The heat pipe had dimensions of 3.0 × 3.0 × 0.254 cm3 and utilized a novel design concept incorporating a two-layer channel arrangement. The device was charged with acetone and tested at a heat input of 95 W within a spin-table centrifuge. It was found that the heat pipe operated and performed near-independent of the investigated hypergravity loading up to 10 g. Results show that at ten times the acceleration due to gravity (10 g), the effective thermal conductivity was almost constant and even slightly increased which is very different from a conventional heat pipe. The gravity-independent heat transfer performance provides a unique feature of OHPs.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.4004076