Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2
The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decreas...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2011-11, Vol.26 (21), p.2725-2734 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2734 |
---|---|
container_issue | 21 |
container_start_page | 2725 |
container_title | Journal of materials research |
container_volume | 26 |
creator | Amama, Placidus B. Grant, John T. Spowart, Jonathan E. Shamberger, Patrick J. Voevodin, Andrey A. Fisher, Timothy S. |
description | The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 > LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction. |
doi_str_mv | 10.1557/jmr.2011.230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_963874528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_230</cupid><sourcerecordid>2508589721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-82c884ffebd39ea22853b16bd30fb3f045e0467d024d5522142857cbfc25bbc73</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFZ3PsDgxlXiXHNZSlErVN3oOszlTDtlktRMIvTtnVJBcOPqcA7ff_j5ELqmJKdSlnfbdsgZoTRnnJygGSNCZJKz4hTNSFWJjNVUnKOLGLeEUElKMUPNQo0q7EdvsO9cmKAzgHuHX32mVQSLlbV-9F8Qcd_hcQPYwmZvh34NnRp9uu2GfgfD6A-Ew1qFgFsfQoq-rJfsEp05FSJc_cw5-nh8eF8ss9Xb0_PifpUZLssxq5hJBZ0DbXkNirFKck2LtBGnuSNCAhFFaQkTVkrGqEhEabQzTGptSj5Ht8e_qc7nBHFsWh8NhKA66KfY1AWvSiFZlcibP-S2n4YulWtqwplMAnmCsiMUd4Pv1jD8QpQ0B9lNkt0cZDdJduLzI29Uqwdv1_BP4BsbE4FB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903252013</pqid></control><display><type>article</type><title>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</title><source>SpringerNature Journals</source><creator>Amama, Placidus B. ; Grant, John T. ; Spowart, Jonathan E. ; Shamberger, Patrick J. ; Voevodin, Andrey A. ; Fisher, Timothy S.</creator><creatorcontrib>Amama, Placidus B. ; Grant, John T. ; Spowart, Jonathan E. ; Shamberger, Patrick J. ; Voevodin, Andrey A. ; Fisher, Timothy S.</creatorcontrib><description>The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 > LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.230</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Ball milling ; Biomaterials ; Catalysis ; Catalysts ; Cooling ; Dehydrogenation ; Energy storage ; Fuel cells ; Gases ; Heat conductivity ; Hydrogen ; Hydrogenation ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nickel ; Stainless steel ; Studies ; Thermal energy</subject><ispartof>Journal of materials research, 2011-11, Vol.26 (21), p.2725-2734</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-82c884ffebd39ea22853b16bd30fb3f045e0467d024d5522142857cbfc25bbc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2011.230$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/jmr.2011.230$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Amama, Placidus B.</creatorcontrib><creatorcontrib>Grant, John T.</creatorcontrib><creatorcontrib>Spowart, Jonathan E.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Fisher, Timothy S.</creatorcontrib><title>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 > LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Ball milling</subject><subject>Biomaterials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cooling</subject><subject>Dehydrogenation</subject><subject>Energy storage</subject><subject>Fuel cells</subject><subject>Gases</subject><subject>Heat conductivity</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Stainless steel</subject><subject>Studies</subject><subject>Thermal energy</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKw0AUhgdRsFZ3PsDgxlXiXHNZSlErVN3oOszlTDtlktRMIvTtnVJBcOPqcA7ff_j5ELqmJKdSlnfbdsgZoTRnnJygGSNCZJKz4hTNSFWJjNVUnKOLGLeEUElKMUPNQo0q7EdvsO9cmKAzgHuHX32mVQSLlbV-9F8Qcd_hcQPYwmZvh34NnRp9uu2GfgfD6A-Ew1qFgFsfQoq-rJfsEp05FSJc_cw5-nh8eF8ss9Xb0_PifpUZLssxq5hJBZ0DbXkNirFKck2LtBGnuSNCAhFFaQkTVkrGqEhEabQzTGptSj5Ht8e_qc7nBHFsWh8NhKA66KfY1AWvSiFZlcibP-S2n4YulWtqwplMAnmCsiMUd4Pv1jD8QpQ0B9lNkt0cZDdJduLzI29Uqwdv1_BP4BsbE4FB</recordid><startdate>20111114</startdate><enddate>20111114</enddate><creator>Amama, Placidus B.</creator><creator>Grant, John T.</creator><creator>Spowart, Jonathan E.</creator><creator>Shamberger, Patrick J.</creator><creator>Voevodin, Andrey A.</creator><creator>Fisher, Timothy S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20111114</creationdate><title>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</title><author>Amama, Placidus B. ; Grant, John T. ; Spowart, Jonathan E. ; Shamberger, Patrick J. ; Voevodin, Andrey A. ; Fisher, Timothy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-82c884ffebd39ea22853b16bd30fb3f045e0467d024d5522142857cbfc25bbc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Ball milling</topic><topic>Biomaterials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cooling</topic><topic>Dehydrogenation</topic><topic>Energy storage</topic><topic>Fuel cells</topic><topic>Gases</topic><topic>Heat conductivity</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Stainless steel</topic><topic>Studies</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amama, Placidus B.</creatorcontrib><creatorcontrib>Grant, John T.</creatorcontrib><creatorcontrib>Spowart, Jonathan E.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Fisher, Timothy S.</creatorcontrib><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amama, Placidus B.</au><au>Grant, John T.</au><au>Spowart, Jonathan E.</au><au>Shamberger, Patrick J.</au><au>Voevodin, Andrey A.</au><au>Fisher, Timothy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-11-14</date><risdate>2011</risdate><volume>26</volume><issue>21</issue><spage>2725</spage><epage>2734</epage><pages>2725-2734</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 > LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.230</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2011-11, Vol.26 (21), p.2725-2734 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_miscellaneous_963874528 |
source | SpringerNature Journals |
subjects | Analysis Applied and Technical Physics Ball milling Biomaterials Catalysis Catalysts Cooling Dehydrogenation Energy storage Fuel cells Gases Heat conductivity Hydrogen Hydrogenation Inorganic Chemistry Materials Engineering Materials research Materials Science Nanotechnology Nickel Stainless steel Studies Thermal energy |
title | Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20influence%20of%20Ni-based%20additives%20on%20the%20dehydrogenation%20properties%20of%20ball%20milled%20MgH2&rft.jtitle=Journal%20of%20materials%20research&rft.au=Amama,%20Placidus%20B.&rft.date=2011-11-14&rft.volume=26&rft.issue=21&rft.spage=2725&rft.epage=2734&rft.pages=2725-2734&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2011.230&rft_dat=%3Cproquest_sprin%3E2508589721%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903252013&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_230&rfr_iscdi=true |