Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2

The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decreas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2011-11, Vol.26 (21), p.2725-2734
Hauptverfasser: Amama, Placidus B., Grant, John T., Spowart, Jonathan E., Shamberger, Patrick J., Voevodin, Andrey A., Fisher, Timothy S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2734
container_issue 21
container_start_page 2725
container_title Journal of materials research
container_volume 26
creator Amama, Placidus B.
Grant, John T.
Spowart, Jonathan E.
Shamberger, Patrick J.
Voevodin, Andrey A.
Fisher, Timothy S.
description The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 > LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.
doi_str_mv 10.1557/jmr.2011.230
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_963874528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_230</cupid><sourcerecordid>2508589721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-82c884ffebd39ea22853b16bd30fb3f045e0467d024d5522142857cbfc25bbc73</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFZ3PsDgxlXiXHNZSlErVN3oOszlTDtlktRMIvTtnVJBcOPqcA7ff_j5ELqmJKdSlnfbdsgZoTRnnJygGSNCZJKz4hTNSFWJjNVUnKOLGLeEUElKMUPNQo0q7EdvsO9cmKAzgHuHX32mVQSLlbV-9F8Qcd_hcQPYwmZvh34NnRp9uu2GfgfD6A-Ew1qFgFsfQoq-rJfsEp05FSJc_cw5-nh8eF8ss9Xb0_PifpUZLssxq5hJBZ0DbXkNirFKck2LtBGnuSNCAhFFaQkTVkrGqEhEabQzTGptSj5Ht8e_qc7nBHFsWh8NhKA66KfY1AWvSiFZlcibP-S2n4YulWtqwplMAnmCsiMUd4Pv1jD8QpQ0B9lNkt0cZDdJduLzI29Uqwdv1_BP4BsbE4FB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903252013</pqid></control><display><type>article</type><title>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</title><source>SpringerNature Journals</source><creator>Amama, Placidus B. ; Grant, John T. ; Spowart, Jonathan E. ; Shamberger, Patrick J. ; Voevodin, Andrey A. ; Fisher, Timothy S.</creator><creatorcontrib>Amama, Placidus B. ; Grant, John T. ; Spowart, Jonathan E. ; Shamberger, Patrick J. ; Voevodin, Andrey A. ; Fisher, Timothy S.</creatorcontrib><description>The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 &gt; LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.230</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Ball milling ; Biomaterials ; Catalysis ; Catalysts ; Cooling ; Dehydrogenation ; Energy storage ; Fuel cells ; Gases ; Heat conductivity ; Hydrogen ; Hydrogenation ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nickel ; Stainless steel ; Studies ; Thermal energy</subject><ispartof>Journal of materials research, 2011-11, Vol.26 (21), p.2725-2734</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-82c884ffebd39ea22853b16bd30fb3f045e0467d024d5522142857cbfc25bbc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2011.230$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/jmr.2011.230$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Amama, Placidus B.</creatorcontrib><creatorcontrib>Grant, John T.</creatorcontrib><creatorcontrib>Spowart, Jonathan E.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Fisher, Timothy S.</creatorcontrib><title>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 &gt; LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Ball milling</subject><subject>Biomaterials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cooling</subject><subject>Dehydrogenation</subject><subject>Energy storage</subject><subject>Fuel cells</subject><subject>Gases</subject><subject>Heat conductivity</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Stainless steel</subject><subject>Studies</subject><subject>Thermal energy</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKw0AUhgdRsFZ3PsDgxlXiXHNZSlErVN3oOszlTDtlktRMIvTtnVJBcOPqcA7ff_j5ELqmJKdSlnfbdsgZoTRnnJygGSNCZJKz4hTNSFWJjNVUnKOLGLeEUElKMUPNQo0q7EdvsO9cmKAzgHuHX32mVQSLlbV-9F8Qcd_hcQPYwmZvh34NnRp9uu2GfgfD6A-Ew1qFgFsfQoq-rJfsEp05FSJc_cw5-nh8eF8ss9Xb0_PifpUZLssxq5hJBZ0DbXkNirFKck2LtBGnuSNCAhFFaQkTVkrGqEhEabQzTGptSj5Ht8e_qc7nBHFsWh8NhKA66KfY1AWvSiFZlcibP-S2n4YulWtqwplMAnmCsiMUd4Pv1jD8QpQ0B9lNkt0cZDdJduLzI29Uqwdv1_BP4BsbE4FB</recordid><startdate>20111114</startdate><enddate>20111114</enddate><creator>Amama, Placidus B.</creator><creator>Grant, John T.</creator><creator>Spowart, Jonathan E.</creator><creator>Shamberger, Patrick J.</creator><creator>Voevodin, Andrey A.</creator><creator>Fisher, Timothy S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20111114</creationdate><title>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</title><author>Amama, Placidus B. ; Grant, John T. ; Spowart, Jonathan E. ; Shamberger, Patrick J. ; Voevodin, Andrey A. ; Fisher, Timothy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-82c884ffebd39ea22853b16bd30fb3f045e0467d024d5522142857cbfc25bbc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Ball milling</topic><topic>Biomaterials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cooling</topic><topic>Dehydrogenation</topic><topic>Energy storage</topic><topic>Fuel cells</topic><topic>Gases</topic><topic>Heat conductivity</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Stainless steel</topic><topic>Studies</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amama, Placidus B.</creatorcontrib><creatorcontrib>Grant, John T.</creatorcontrib><creatorcontrib>Spowart, Jonathan E.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Fisher, Timothy S.</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amama, Placidus B.</au><au>Grant, John T.</au><au>Spowart, Jonathan E.</au><au>Shamberger, Patrick J.</au><au>Voevodin, Andrey A.</au><au>Fisher, Timothy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-11-14</date><risdate>2011</risdate><volume>26</volume><issue>21</issue><spage>2725</spage><epage>2734</epage><pages>2725-2734</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>The catalytic influence of Ni, Zr2Ni5, and LaNi5 on the dehydrogenation properties of milled MgH2 was investigated. MgH2 milled in the presence of Ni (5 wt%) and Zr2Ni5 (5 wt%) catalysts for 2 h showed apparent activation energies, EA, of 81 and 79 kJ/mol, respectively, corresponding to ∼50% decrease in EA and a moderate decrease (∼100 °C) in the decomposition temperature (Tdec). A further 27 °C decrease in Tdec was observed after milling with 10 wt%Ni. Based on the EA values, the catalytic activity decreased in the following order: Ni ≈ Zr2Ni5 &gt; LaNi5. X-ray photoelectron spectroscopy analysis of the milled and dehydrogenated states of the hydrides modified with Ni catalyst revealed that the observed reduction in EA may be due to the ability of Ni catalyst to decrease the amount of oxygen atoms in defective positions that are capable of blocking catalytically active sites thereby enhancing the dehydrogenation kinetics. In particular, our results reveal a strong correlation between the type of oxygen species adsorbed on Ni-modified MgH2 and the EA of the dehydrogenation reaction.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.230</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2011-11, Vol.26 (21), p.2725-2734
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_963874528
source SpringerNature Journals
subjects Analysis
Applied and Technical Physics
Ball milling
Biomaterials
Catalysis
Catalysts
Cooling
Dehydrogenation
Energy storage
Fuel cells
Gases
Heat conductivity
Hydrogen
Hydrogenation
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanotechnology
Nickel
Stainless steel
Studies
Thermal energy
title Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20influence%20of%20Ni-based%20additives%20on%20the%20dehydrogenation%20properties%20of%20ball%20milled%20MgH2&rft.jtitle=Journal%20of%20materials%20research&rft.au=Amama,%20Placidus%20B.&rft.date=2011-11-14&rft.volume=26&rft.issue=21&rft.spage=2725&rft.epage=2734&rft.pages=2725-2734&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2011.230&rft_dat=%3Cproquest_sprin%3E2508589721%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903252013&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_230&rfr_iscdi=true