Curvature Estimation of Point Set Data Based on the Moving-Least Square Surface

Curvature estimation is a basic step in many point relative applications such as feature recognition, segmentation, shape analysis and simplification. This paper proposes a moving-least square (MLS) surface based method to evaluate curvatures for unorganized point cloud data. First a variation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2011-08, Vol.16 (4), p.402-411
1. Verfasser: 邱彦杰 周雄辉 杨平海 钱小平
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 4
container_start_page 402
container_title Shanghai jiao tong da xue xue bao
container_volume 16
creator 邱彦杰 周雄辉 杨平海 钱小平
description Curvature estimation is a basic step in many point relative applications such as feature recognition, segmentation, shape analysis and simplification. This paper proposes a moving-least square (MLS) surface based method to evaluate curvatures for unorganized point cloud data. First a variation of the projection based MLS surface is adopted as the underlying representation of the input points. A set of equations for geometric analysis are derived from the implicit definition of the MLS surface. These equations are then used to compute curvatures of the surface. Moreover, an empirical formula for determining the appropriate Gaussian factor is presented to improve the accuracy of curvature estimation. The proposed method is tested on several sets of synthetic and real data. The results demonstrate that the MLS surface based method can faithfully and efficiently estimate curvatures and reflect subtle curvature variations. The comparisons with other curvature computation algorithms also show that the presented method performs well when handling noisy data and dense points with complex shapes.
doi_str_mv 10.1007/s12204-011-1168-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963872518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38856904</cqvip_id><sourcerecordid>963872518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-6acb004b3401df1c0d483bde5251f0b2bbef75101c768ec75281e760b6bb6aa33</originalsourceid><addsrcrecordid>eNp9kE1PwyAYx4nRxDn9AN7w5AnlgZbSo875kszMZHomQOnWZSsbtEv89rLUePQEyfP7PS9_hK6B3gGlxX0ExmhGKAABEJKIEzSCssyJBClP0z9BqVKwc3QR45rSjHJejtB80oeD7vrg8DR2zVZ3jW-xr_GHb9oOL1yHn3Sn8aOOrsKp1K0cfveHpl2SmdMxIfteJ3vRh1pbd4nOar2J7ur3HaOv5-nn5JXM5i9vk4cZsZwVgghtTdrB8IxCVYOlVSa5qVzOcqipYca4usiBgi2EdLbImQRXCGqEMUJrzsfodui7C37fu9ipbROt22x063wfVSm4LFIzmUgYSBt8jMHVahfSneFbAVXHWNSQnUrZqWN2SiSHDU5MbLt0Qa19H9p00L_Sze-glW-X--T9TeJS5qKkGf8B10h7xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963872518</pqid></control><display><type>article</type><title>Curvature Estimation of Point Set Data Based on the Moving-Least Square Surface</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>邱彦杰 周雄辉 杨平海 钱小平</creator><creatorcontrib>邱彦杰 周雄辉 杨平海 钱小平</creatorcontrib><description>Curvature estimation is a basic step in many point relative applications such as feature recognition, segmentation, shape analysis and simplification. This paper proposes a moving-least square (MLS) surface based method to evaluate curvatures for unorganized point cloud data. First a variation of the projection based MLS surface is adopted as the underlying representation of the input points. A set of equations for geometric analysis are derived from the implicit definition of the MLS surface. These equations are then used to compute curvatures of the surface. Moreover, an empirical formula for determining the appropriate Gaussian factor is presented to improve the accuracy of curvature estimation. The proposed method is tested on several sets of synthetic and real data. The results demonstrate that the MLS surface based method can faithfully and efficiently estimate curvatures and reflect subtle curvature variations. The comparisons with other curvature computation algorithms also show that the presented method performs well when handling noisy data and dense points with complex shapes.</description><identifier>ISSN: 1007-1172</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-011-1168-6</identifier><language>eng</language><publisher>Heidelberg: Shanghai Jiaotong University Press</publisher><subject>Algorithms ; Architecture ; Computer Science ; Curvature ; Electrical Engineering ; Engineering ; Gaussian ; Life Sciences ; Materials Science ; Mathematical analysis ; Projection ; Representations ; Segmentation ; Simplification</subject><ispartof>Shanghai jiao tong da xue xue bao, 2011-08, Vol.16 (4), p.402-411</ispartof><rights>Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-6acb004b3401df1c0d483bde5251f0b2bbef75101c768ec75281e760b6bb6aa33</citedby><cites>FETCH-LOGICAL-c3276-6acb004b3401df1c0d483bde5251f0b2bbef75101c768ec75281e760b6bb6aa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85391X/85391X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12204-011-1168-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12204-011-1168-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>邱彦杰 周雄辉 杨平海 钱小平</creatorcontrib><title>Curvature Estimation of Point Set Data Based on the Moving-Least Square Surface</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><description>Curvature estimation is a basic step in many point relative applications such as feature recognition, segmentation, shape analysis and simplification. This paper proposes a moving-least square (MLS) surface based method to evaluate curvatures for unorganized point cloud data. First a variation of the projection based MLS surface is adopted as the underlying representation of the input points. A set of equations for geometric analysis are derived from the implicit definition of the MLS surface. These equations are then used to compute curvatures of the surface. Moreover, an empirical formula for determining the appropriate Gaussian factor is presented to improve the accuracy of curvature estimation. The proposed method is tested on several sets of synthetic and real data. The results demonstrate that the MLS surface based method can faithfully and efficiently estimate curvatures and reflect subtle curvature variations. The comparisons with other curvature computation algorithms also show that the presented method performs well when handling noisy data and dense points with complex shapes.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Computer Science</subject><subject>Curvature</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Gaussian</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Projection</subject><subject>Representations</subject><subject>Segmentation</subject><subject>Simplification</subject><issn>1007-1172</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwyAYx4nRxDn9AN7w5AnlgZbSo875kszMZHomQOnWZSsbtEv89rLUePQEyfP7PS9_hK6B3gGlxX0ExmhGKAABEJKIEzSCssyJBClP0z9BqVKwc3QR45rSjHJejtB80oeD7vrg8DR2zVZ3jW-xr_GHb9oOL1yHn3Sn8aOOrsKp1K0cfveHpl2SmdMxIfteJ3vRh1pbd4nOar2J7ur3HaOv5-nn5JXM5i9vk4cZsZwVgghtTdrB8IxCVYOlVSa5qVzOcqipYca4usiBgi2EdLbImQRXCGqEMUJrzsfodui7C37fu9ipbROt22x063wfVSm4LFIzmUgYSBt8jMHVahfSneFbAVXHWNSQnUrZqWN2SiSHDU5MbLt0Qa19H9p00L_Sze-glW-X--T9TeJS5qKkGf8B10h7xA</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>邱彦杰 周雄辉 杨平海 钱小平</creator><general>Shanghai Jiaotong University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201108</creationdate><title>Curvature Estimation of Point Set Data Based on the Moving-Least Square Surface</title><author>邱彦杰 周雄辉 杨平海 钱小平</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-6acb004b3401df1c0d483bde5251f0b2bbef75101c768ec75281e760b6bb6aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Computer Science</topic><topic>Curvature</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Gaussian</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Projection</topic><topic>Representations</topic><topic>Segmentation</topic><topic>Simplification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>邱彦杰 周雄辉 杨平海 钱小平</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>邱彦杰 周雄辉 杨平海 钱小平</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature Estimation of Point Set Data Based on the Moving-Least Square Surface</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><date>2011-08</date><risdate>2011</risdate><volume>16</volume><issue>4</issue><spage>402</spage><epage>411</epage><pages>402-411</pages><issn>1007-1172</issn><eissn>1995-8188</eissn><abstract>Curvature estimation is a basic step in many point relative applications such as feature recognition, segmentation, shape analysis and simplification. This paper proposes a moving-least square (MLS) surface based method to evaluate curvatures for unorganized point cloud data. First a variation of the projection based MLS surface is adopted as the underlying representation of the input points. A set of equations for geometric analysis are derived from the implicit definition of the MLS surface. These equations are then used to compute curvatures of the surface. Moreover, an empirical formula for determining the appropriate Gaussian factor is presented to improve the accuracy of curvature estimation. The proposed method is tested on several sets of synthetic and real data. The results demonstrate that the MLS surface based method can faithfully and efficiently estimate curvatures and reflect subtle curvature variations. The comparisons with other curvature computation algorithms also show that the presented method performs well when handling noisy data and dense points with complex shapes.</abstract><cop>Heidelberg</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-011-1168-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-1172
ispartof Shanghai jiao tong da xue xue bao, 2011-08, Vol.16 (4), p.402-411
issn 1007-1172
1995-8188
language eng
recordid cdi_proquest_miscellaneous_963872518
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Architecture
Computer Science
Curvature
Electrical Engineering
Engineering
Gaussian
Life Sciences
Materials Science
Mathematical analysis
Projection
Representations
Segmentation
Simplification
title Curvature Estimation of Point Set Data Based on the Moving-Least Square Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20Estimation%20of%20Point%20Set%20Data%20Based%20on%20the%20Moving-Least%20Square%20Surface&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=%E9%82%B1%E5%BD%A6%E6%9D%B0%20%E5%91%A8%E9%9B%84%E8%BE%89%20%E6%9D%A8%E5%B9%B3%E6%B5%B7%20%E9%92%B1%E5%B0%8F%E5%B9%B3&rft.date=2011-08&rft.volume=16&rft.issue=4&rft.spage=402&rft.epage=411&rft.pages=402-411&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-011-1168-6&rft_dat=%3Cproquest_cross%3E963872518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963872518&rft_id=info:pmid/&rft_cqvip_id=38856904&rfr_iscdi=true