Enhancement of hematoporphyrin IX potential for photodynamic therapy by entrapment in silica nanospheres
The entrapment of hematoporphyrin IX (Hp IX) in silica by means of a microemulsion resulted in silica spheres of 33 ± 6 nm. The small size, narrow size distribution and lack of aggregation maintain Hp IX silica nanospheres stable in aqueous solutions for long periods and permit a detailed study of t...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2011-09, Vol.13 (33), p.14946-14952 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The entrapment of hematoporphyrin IX (Hp IX) in silica by means of a microemulsion resulted in silica spheres of 33 ± 6 nm. The small size, narrow size distribution and lack of aggregation maintain Hp IX silica nanospheres stable in aqueous solutions for long periods and permit a detailed study of the entrapped drug by different techniques. Hp IX entrapped in the silica matrix is accessed by oxygen and upon irradiation generates singlet oxygen which diffuses very efficiently to the outside solution. The Hp IX entrapped in the silica matrix is also reached by iron(II) ions, which causes quenching of the porphyrin fluorescence emission. The silica matrix also provides extra protection to the photosensitizer against interaction with BSA and ascorbic acid, which are known to cause suppression of singlet oxygen generation by the Hp IX free in solution. Therefore, the incorporation of Hp IX molecules into silica nanospheres increased the potential of the photosensitizer to perform photodynamic therapy. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c1cp21525f |