Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection

In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2012-03, Vol.186 (1), p.73-92
Hauptverfasser: Derrac, Joaquín, Cornelis, Chris, García, Salvador, Herrera, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 73
container_title Information sciences
container_volume 186
creator Derrac, Joaquín
Cornelis, Chris
García, Salvador
Herrera, Francisco
description In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered. In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.
doi_str_mv 10.1016/j.ins.2011.09.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963871627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511004841</els_id><sourcerecordid>963871627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB8_wF12rma8ydhkgiuR-gDBja5Dmty0KdOJJjOF-utNWxeuXN3L4XwHziHkikHNgImbVR36XHNgrAZVA5dHZMJaySvBFTsmEwAOFfDp9JSc5bwCgFspxIQsZ_3S9Db0C4qb2I1DiL1JW1rShqIjzdih3anUdIuYwrBcZzrf0jWaPtPoqR-_v7c0xXGxLOaBzk1GRz2aYUx_8Aty4k2X8fL3npOPx9n7w3P1-vb08nD_WtmGq6FyAiwo1RjHLfpWCgYoRds0rW9NozyC8vtfoXdybiU6L5CjunXGtAU8J9eH3M8Uv0bMg16HbLHrTI9xzFqJppVMcFmc7OC0Keac0OvPFNalvGagd6PqlS4z6N2oGpSGPXN3YLBU2ARMOtuAZScXUumpXQz_0D_l0ILR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963871627</pqid></control><display><type>article</type><title>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</title><source>Access via ScienceDirect (Elsevier)</source><creator>Derrac, Joaquín ; Cornelis, Chris ; García, Salvador ; Herrera, Francisco</creator><creatorcontrib>Derrac, Joaquín ; Cornelis, Chris ; García, Salvador ; Herrera, Francisco</creatorcontrib><description>In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered. In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.09.027</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Classifiers ; Data reduction ; Evolutionary ; Evolutionary algorithms ; Feature selection ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Instance selection ; Nearest neighbor ; Rough sets ; Searching</subject><ispartof>Information sciences, 2012-03, Vol.186 (1), p.73-92</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</citedby><cites>FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2011.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Cornelis, Chris</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</title><title>Information sciences</title><description>In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered. In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.</description><subject>Classifiers</subject><subject>Data reduction</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Feature selection</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Instance selection</subject><subject>Nearest neighbor</subject><subject>Rough sets</subject><subject>Searching</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB8_wF12rma8ydhkgiuR-gDBja5Dmty0KdOJJjOF-utNWxeuXN3L4XwHziHkikHNgImbVR36XHNgrAZVA5dHZMJaySvBFTsmEwAOFfDp9JSc5bwCgFspxIQsZ_3S9Db0C4qb2I1DiL1JW1rShqIjzdih3anUdIuYwrBcZzrf0jWaPtPoqR-_v7c0xXGxLOaBzk1GRz2aYUx_8Aty4k2X8fL3npOPx9n7w3P1-vb08nD_WtmGq6FyAiwo1RjHLfpWCgYoRds0rW9NozyC8vtfoXdybiU6L5CjunXGtAU8J9eH3M8Uv0bMg16HbLHrTI9xzFqJppVMcFmc7OC0Keac0OvPFNalvGagd6PqlS4z6N2oGpSGPXN3YLBU2ARMOtuAZScXUumpXQz_0D_l0ILR</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Derrac, Joaquín</creator><creator>Cornelis, Chris</creator><creator>García, Salvador</creator><creator>Herrera, Francisco</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</title><author>Derrac, Joaquín ; Cornelis, Chris ; García, Salvador ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classifiers</topic><topic>Data reduction</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Feature selection</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Instance selection</topic><topic>Nearest neighbor</topic><topic>Rough sets</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Cornelis, Chris</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrac, Joaquín</au><au>Cornelis, Chris</au><au>García, Salvador</au><au>Herrera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</atitle><jtitle>Information sciences</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>186</volume><issue>1</issue><spage>73</spage><epage>92</epage><pages>73-92</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered. In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.09.027</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2012-03, Vol.186 (1), p.73-92
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_963871627
source Access via ScienceDirect (Elsevier)
subjects Classifiers
Data reduction
Evolutionary
Evolutionary algorithms
Feature selection
Fuzzy
Fuzzy logic
Fuzzy set theory
Instance selection
Nearest neighbor
Rough sets
Searching
title Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20evolutionary%20instance%20selection%20algorithms%20by%20means%20of%20fuzzy%20rough%20set%20based%20feature%20selection&rft.jtitle=Information%20sciences&rft.au=Derrac,%20Joaqu%C3%ADn&rft.date=2012-03-01&rft.volume=186&rft.issue=1&rft.spage=73&rft.epage=92&rft.pages=73-92&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.09.027&rft_dat=%3Cproquest_cross%3E963871627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963871627&rft_id=info:pmid/&rft_els_id=S0020025511004841&rfr_iscdi=true