Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be...
Gespeichert in:
Veröffentlicht in: | Information sciences 2012-03, Vol.186 (1), p.73-92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Information sciences |
container_volume | 186 |
creator | Derrac, Joaquín Cornelis, Chris García, Salvador Herrera, Francisco |
description | In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered.
In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier. |
doi_str_mv | 10.1016/j.ins.2011.09.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963871627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511004841</els_id><sourcerecordid>963871627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB8_wF12rma8ydhkgiuR-gDBja5Dmty0KdOJJjOF-utNWxeuXN3L4XwHziHkikHNgImbVR36XHNgrAZVA5dHZMJaySvBFTsmEwAOFfDp9JSc5bwCgFspxIQsZ_3S9Db0C4qb2I1DiL1JW1rShqIjzdih3anUdIuYwrBcZzrf0jWaPtPoqR-_v7c0xXGxLOaBzk1GRz2aYUx_8Aty4k2X8fL3npOPx9n7w3P1-vb08nD_WtmGq6FyAiwo1RjHLfpWCgYoRds0rW9NozyC8vtfoXdybiU6L5CjunXGtAU8J9eH3M8Uv0bMg16HbLHrTI9xzFqJppVMcFmc7OC0Keac0OvPFNalvGagd6PqlS4z6N2oGpSGPXN3YLBU2ARMOtuAZScXUumpXQz_0D_l0ILR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963871627</pqid></control><display><type>article</type><title>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</title><source>Access via ScienceDirect (Elsevier)</source><creator>Derrac, Joaquín ; Cornelis, Chris ; García, Salvador ; Herrera, Francisco</creator><creatorcontrib>Derrac, Joaquín ; Cornelis, Chris ; García, Salvador ; Herrera, Francisco</creatorcontrib><description>In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered.
In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.09.027</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Classifiers ; Data reduction ; Evolutionary ; Evolutionary algorithms ; Feature selection ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Instance selection ; Nearest neighbor ; Rough sets ; Searching</subject><ispartof>Information sciences, 2012-03, Vol.186 (1), p.73-92</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</citedby><cites>FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2011.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Cornelis, Chris</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</title><title>Information sciences</title><description>In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered.
In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.</description><subject>Classifiers</subject><subject>Data reduction</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Feature selection</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Instance selection</subject><subject>Nearest neighbor</subject><subject>Rough sets</subject><subject>Searching</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB8_wF12rma8ydhkgiuR-gDBja5Dmty0KdOJJjOF-utNWxeuXN3L4XwHziHkikHNgImbVR36XHNgrAZVA5dHZMJaySvBFTsmEwAOFfDp9JSc5bwCgFspxIQsZ_3S9Db0C4qb2I1DiL1JW1rShqIjzdih3anUdIuYwrBcZzrf0jWaPtPoqR-_v7c0xXGxLOaBzk1GRz2aYUx_8Aty4k2X8fL3npOPx9n7w3P1-vb08nD_WtmGq6FyAiwo1RjHLfpWCgYoRds0rW9NozyC8vtfoXdybiU6L5CjunXGtAU8J9eH3M8Uv0bMg16HbLHrTI9xzFqJppVMcFmc7OC0Keac0OvPFNalvGagd6PqlS4z6N2oGpSGPXN3YLBU2ARMOtuAZScXUumpXQz_0D_l0ILR</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Derrac, Joaquín</creator><creator>Cornelis, Chris</creator><creator>García, Salvador</creator><creator>Herrera, Francisco</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</title><author>Derrac, Joaquín ; Cornelis, Chris ; García, Salvador ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-d60c0993ad2cef87610e768338f8a39fe09f38f8a9efd7bc7edf6e2e94daa8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classifiers</topic><topic>Data reduction</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Feature selection</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Instance selection</topic><topic>Nearest neighbor</topic><topic>Rough sets</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>Cornelis, Chris</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrac, Joaquín</au><au>Cornelis, Chris</au><au>García, Salvador</au><au>Herrera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection</atitle><jtitle>Information sciences</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>186</volume><issue>1</issue><spage>73</spage><epage>92</epage><pages>73-92</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considered.
In this work, a hybrid evolutionary algorithm for data reduction, using both instance and feature selection, is presented. A global process of instance selection, carried out by a steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection process, which searches for the most interesting features to enhance both the evolutionary search process and the final preprocessed data set. The experimental study, the results of which have been contrasted through nonparametric statistical tests, shows that our proposal obtains high reduction rates on training sets which greatly enhance the behavior of the nearest neighbor classifier.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.09.027</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2012-03, Vol.186 (1), p.73-92 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_963871627 |
source | Access via ScienceDirect (Elsevier) |
subjects | Classifiers Data reduction Evolutionary Evolutionary algorithms Feature selection Fuzzy Fuzzy logic Fuzzy set theory Instance selection Nearest neighbor Rough sets Searching |
title | Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20evolutionary%20instance%20selection%20algorithms%20by%20means%20of%20fuzzy%20rough%20set%20based%20feature%20selection&rft.jtitle=Information%20sciences&rft.au=Derrac,%20Joaqu%C3%ADn&rft.date=2012-03-01&rft.volume=186&rft.issue=1&rft.spage=73&rft.epage=92&rft.pages=73-92&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.09.027&rft_dat=%3Cproquest_cross%3E963871627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963871627&rft_id=info:pmid/&rft_els_id=S0020025511004841&rfr_iscdi=true |