Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography

Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2011-06, Vol.11 (12), p.2116-2118
Hauptverfasser: Mogensen, Klaus B, Chen, Miaoxiang, Molhave, Kristian, Boggild, Peter, Kutter, Jörg P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2118
container_issue 12
container_start_page 2116
container_title Lab on a chip
container_volume 11
creator Mogensen, Klaus B
Chen, Miaoxiang
Molhave, Kristian
Boggild, Peter
Kutter, Jörg P
description Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.
doi_str_mv 10.1039/c0lc00672f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963870714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>870290759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</originalsourceid><addsrcrecordid>eNqFkU9LxDAQxYMorq5e_ACSmyBUkyZt2qMs_oMFL3ouaTrZRtKmJulhv72RXdejp3nD_ObBzEPoipI7Slh9r4hVhJQi10fojHLBMkKr-viga7FA5yF8EkILXlanaJEnIRjlZ8itpG_diEc5uji3gFsZoMMBJullNGminJ2HMWDtPO7NpsdgQUVvlLRYG7AJjh7GTewDNiMejPJO9Wbac0l7N8joNl5O_fYCnWhpA1zu6xJ9PD2-r16y9dvz6-phnSlGq5hVJZScKQ6ibHmtOS8qwQsm805TCqLNmYKu1YwrSD0RtMg1KAkgCi2hYGyJbna-k3dfM4TYDCYosFaO4ObQ1CWrRNrj_5IJy2siijqRtzsyXRiCB91M3gzSbxtKmp8kmr8kEny9t53bAboD-vt69g2HGobG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870290759</pqid></control><display><type>article</type><title>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mogensen, Klaus B ; Chen, Miaoxiang ; Molhave, Kristian ; Boggild, Peter ; Kutter, Jörg P</creator><creatorcontrib>Mogensen, Klaus B ; Chen, Miaoxiang ; Molhave, Kristian ; Boggild, Peter ; Kutter, Jörg P</creatorcontrib><description>Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c0lc00672f</identifier><identifier>PMID: 21547314</identifier><language>eng</language><publisher>England</publisher><subject>Arrays ; Carbon nanotubes ; Channels ; Electrically conductive ; Field strength ; Nanotubes ; Pillars ; Separation</subject><ispartof>Lab on a chip, 2011-06, Vol.11 (12), p.2116-2118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</citedby><cites>FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21547314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mogensen, Klaus B</creatorcontrib><creatorcontrib>Chen, Miaoxiang</creatorcontrib><creatorcontrib>Molhave, Kristian</creatorcontrib><creatorcontrib>Boggild, Peter</creatorcontrib><creatorcontrib>Kutter, Jörg P</creatorcontrib><title>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.</description><subject>Arrays</subject><subject>Carbon nanotubes</subject><subject>Channels</subject><subject>Electrically conductive</subject><subject>Field strength</subject><subject>Nanotubes</subject><subject>Pillars</subject><subject>Separation</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LxDAQxYMorq5e_ACSmyBUkyZt2qMs_oMFL3ouaTrZRtKmJulhv72RXdejp3nD_ObBzEPoipI7Slh9r4hVhJQi10fojHLBMkKr-viga7FA5yF8EkILXlanaJEnIRjlZ8itpG_diEc5uji3gFsZoMMBJullNGminJ2HMWDtPO7NpsdgQUVvlLRYG7AJjh7GTewDNiMejPJO9Wbac0l7N8joNl5O_fYCnWhpA1zu6xJ9PD2-r16y9dvz6-phnSlGq5hVJZScKQ6ibHmtOS8qwQsm805TCqLNmYKu1YwrSD0RtMg1KAkgCi2hYGyJbna-k3dfM4TYDCYosFaO4ObQ1CWrRNrj_5IJy2siijqRtzsyXRiCB91M3gzSbxtKmp8kmr8kEny9t53bAboD-vt69g2HGobG</recordid><startdate>20110621</startdate><enddate>20110621</enddate><creator>Mogensen, Klaus B</creator><creator>Chen, Miaoxiang</creator><creator>Molhave, Kristian</creator><creator>Boggild, Peter</creator><creator>Kutter, Jörg P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110621</creationdate><title>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</title><author>Mogensen, Klaus B ; Chen, Miaoxiang ; Molhave, Kristian ; Boggild, Peter ; Kutter, Jörg P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Carbon nanotubes</topic><topic>Channels</topic><topic>Electrically conductive</topic><topic>Field strength</topic><topic>Nanotubes</topic><topic>Pillars</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogensen, Klaus B</creatorcontrib><creatorcontrib>Chen, Miaoxiang</creatorcontrib><creatorcontrib>Molhave, Kristian</creatorcontrib><creatorcontrib>Boggild, Peter</creatorcontrib><creatorcontrib>Kutter, Jörg P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogensen, Klaus B</au><au>Chen, Miaoxiang</au><au>Molhave, Kristian</au><au>Boggild, Peter</au><au>Kutter, Jörg P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2011-06-21</date><risdate>2011</risdate><volume>11</volume><issue>12</issue><spage>2116</spage><epage>2118</epage><pages>2116-2118</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.</abstract><cop>England</cop><pmid>21547314</pmid><doi>10.1039/c0lc00672f</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2011-06, Vol.11 (12), p.2116-2118
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_963870714
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Arrays
Carbon nanotubes
Channels
Electrically conductive
Field strength
Nanotubes
Pillars
Separation
title Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20based%20separation%20columns%20for%20high%20electrical%20field%20strengths%20in%20microchip%20electrochromatography&rft.jtitle=Lab%20on%20a%20chip&rft.au=Mogensen,%20Klaus%20B&rft.date=2011-06-21&rft.volume=11&rft.issue=12&rft.spage=2116&rft.epage=2118&rft.pages=2116-2118&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c0lc00672f&rft_dat=%3Cproquest_cross%3E870290759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870290759&rft_id=info:pmid/21547314&rfr_iscdi=true