Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography
Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2011-06, Vol.11 (12), p.2116-2118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2118 |
---|---|
container_issue | 12 |
container_start_page | 2116 |
container_title | Lab on a chip |
container_volume | 11 |
creator | Mogensen, Klaus B Chen, Miaoxiang Molhave, Kristian Boggild, Peter Kutter, Jörg P |
description | Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%. |
doi_str_mv | 10.1039/c0lc00672f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963870714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>870290759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</originalsourceid><addsrcrecordid>eNqFkU9LxDAQxYMorq5e_ACSmyBUkyZt2qMs_oMFL3ouaTrZRtKmJulhv72RXdejp3nD_ObBzEPoipI7Slh9r4hVhJQi10fojHLBMkKr-viga7FA5yF8EkILXlanaJEnIRjlZ8itpG_diEc5uji3gFsZoMMBJullNGminJ2HMWDtPO7NpsdgQUVvlLRYG7AJjh7GTewDNiMejPJO9Wbac0l7N8joNl5O_fYCnWhpA1zu6xJ9PD2-r16y9dvz6-phnSlGq5hVJZScKQ6ibHmtOS8qwQsm805TCqLNmYKu1YwrSD0RtMg1KAkgCi2hYGyJbna-k3dfM4TYDCYosFaO4ObQ1CWrRNrj_5IJy2siijqRtzsyXRiCB91M3gzSbxtKmp8kmr8kEny9t53bAboD-vt69g2HGobG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870290759</pqid></control><display><type>article</type><title>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mogensen, Klaus B ; Chen, Miaoxiang ; Molhave, Kristian ; Boggild, Peter ; Kutter, Jörg P</creator><creatorcontrib>Mogensen, Klaus B ; Chen, Miaoxiang ; Molhave, Kristian ; Boggild, Peter ; Kutter, Jörg P</creatorcontrib><description>Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c0lc00672f</identifier><identifier>PMID: 21547314</identifier><language>eng</language><publisher>England</publisher><subject>Arrays ; Carbon nanotubes ; Channels ; Electrically conductive ; Field strength ; Nanotubes ; Pillars ; Separation</subject><ispartof>Lab on a chip, 2011-06, Vol.11 (12), p.2116-2118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</citedby><cites>FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21547314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mogensen, Klaus B</creatorcontrib><creatorcontrib>Chen, Miaoxiang</creatorcontrib><creatorcontrib>Molhave, Kristian</creatorcontrib><creatorcontrib>Boggild, Peter</creatorcontrib><creatorcontrib>Kutter, Jörg P</creatorcontrib><title>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.</description><subject>Arrays</subject><subject>Carbon nanotubes</subject><subject>Channels</subject><subject>Electrically conductive</subject><subject>Field strength</subject><subject>Nanotubes</subject><subject>Pillars</subject><subject>Separation</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LxDAQxYMorq5e_ACSmyBUkyZt2qMs_oMFL3ouaTrZRtKmJulhv72RXdejp3nD_ObBzEPoipI7Slh9r4hVhJQi10fojHLBMkKr-viga7FA5yF8EkILXlanaJEnIRjlZ8itpG_diEc5uji3gFsZoMMBJullNGminJ2HMWDtPO7NpsdgQUVvlLRYG7AJjh7GTewDNiMejPJO9Wbac0l7N8joNl5O_fYCnWhpA1zu6xJ9PD2-r16y9dvz6-phnSlGq5hVJZScKQ6ibHmtOS8qwQsm805TCqLNmYKu1YwrSD0RtMg1KAkgCi2hYGyJbna-k3dfM4TYDCYosFaO4ObQ1CWrRNrj_5IJy2siijqRtzsyXRiCB91M3gzSbxtKmp8kmr8kEny9t53bAboD-vt69g2HGobG</recordid><startdate>20110621</startdate><enddate>20110621</enddate><creator>Mogensen, Klaus B</creator><creator>Chen, Miaoxiang</creator><creator>Molhave, Kristian</creator><creator>Boggild, Peter</creator><creator>Kutter, Jörg P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110621</creationdate><title>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</title><author>Mogensen, Klaus B ; Chen, Miaoxiang ; Molhave, Kristian ; Boggild, Peter ; Kutter, Jörg P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-86e643c4e76b49f44587453a2df11e7b23cedbf34ce11e07152fecaee75fae533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Carbon nanotubes</topic><topic>Channels</topic><topic>Electrically conductive</topic><topic>Field strength</topic><topic>Nanotubes</topic><topic>Pillars</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogensen, Klaus B</creatorcontrib><creatorcontrib>Chen, Miaoxiang</creatorcontrib><creatorcontrib>Molhave, Kristian</creatorcontrib><creatorcontrib>Boggild, Peter</creatorcontrib><creatorcontrib>Kutter, Jörg P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogensen, Klaus B</au><au>Chen, Miaoxiang</au><au>Molhave, Kristian</au><au>Boggild, Peter</au><au>Kutter, Jörg P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2011-06-21</date><risdate>2011</risdate><volume>11</volume><issue>12</issue><spage>2116</spage><epage>2118</epage><pages>2116-2118</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.</abstract><cop>England</cop><pmid>21547314</pmid><doi>10.1039/c0lc00672f</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2011-06, Vol.11 (12), p.2116-2118 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_963870714 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Arrays Carbon nanotubes Channels Electrically conductive Field strength Nanotubes Pillars Separation |
title | Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20based%20separation%20columns%20for%20high%20electrical%20field%20strengths%20in%20microchip%20electrochromatography&rft.jtitle=Lab%20on%20a%20chip&rft.au=Mogensen,%20Klaus%20B&rft.date=2011-06-21&rft.volume=11&rft.issue=12&rft.spage=2116&rft.epage=2118&rft.pages=2116-2118&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c0lc00672f&rft_dat=%3Cproquest_cross%3E870290759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870290759&rft_id=info:pmid/21547314&rfr_iscdi=true |