Temperature dependence of crystal growth of hexagonal ice (Ih)
The transformations between water and ice have many implications across numerous fields of study. A better understanding of this process would benefit many areas of science and technology such as medicine, biology, and atmospheric and material sciences. In the present work the temperature dependence...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2011-09, Vol.13 (34), p.15501-15511 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15511 |
---|---|
container_issue | 34 |
container_start_page | 15501 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 13 |
creator | ROZMANOV, Dmitri KUSALIK, Peter G |
description | The transformations between water and ice have many implications across numerous fields of study. A better understanding of this process would benefit many areas of science and technology such as medicine, biology, and atmospheric and material sciences. In the present work the temperature dependence of the rate of growth (melting) of the basal face of hexagonal ice I(h) and the effect of system size are investigated in molecular dynamics simulations. Using an effective pair potential model of water, systems are studied over temperatures ranging from T(M) - 40 to T(M) + 16 K, where T(M) is the melting temperature of the model. It is found that the growth rates reach a maximum value of 0.7 Å ns(-1) (7 cm s(-1)) at about 12 K below the melting temperature. A noticeable effect of the system size on the melting temperature and ice growth rates is observed; it is shown that the size effect arises in smaller systems due to the artificial ordering under periodic conditions. The decrease in melting entropy in the smallest system by 0.4 J (mol K)(-1) relative to the largest system results in an up-shift in the melting temperature by about 2 K. An almost 60% increase in the maximum growth rate is observed for the smallest system. |
doi_str_mv | 10.1039/c1cp21210a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963869769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963869769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6274693c6301c128cb19b286495545006f07a98cd5c2a6dda5e014e28555dfd93</originalsourceid><addsrcrecordid>eNqF0EtLw0AUBeBBFFurG3-AZCM-IDrvzGwKUnwUCm7qOkxnbtpIXs4kaP-9Ka3t0tW9HD7O4iB0SfADwUw_WmIbSijB5ggNCZcs1ljx4_2fyAE6C-ETY0wEYadoQEmiKcdsiMZzKBvwpu08RA4aqBxUFqI6i6xfh9YU0dLX3-1qk6zgxyzrqs_yntxOV3fn6CQzRYCL3R2hj5fn-eQtnr2_TidPs9gyrtpY0oRLzaxkmFhClV0QvaBKci0EFxjLDCdGK-uEpUY6ZwRgwoEqIYTLnGYjdLPtbXz91UFo0zIPForCVFB3IdWSKakT-b9Uiisusd7I-620vg7BQ5Y2Pi-NX6cEp5th08OwPb7a1XaLEtye_i3Zg-sdMMGaIvOmsnk4OM6VYpqyX1BDfe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884846099</pqid></control><display><type>article</type><title>Temperature dependence of crystal growth of hexagonal ice (Ih)</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>ROZMANOV, Dmitri ; KUSALIK, Peter G</creator><creatorcontrib>ROZMANOV, Dmitri ; KUSALIK, Peter G</creatorcontrib><description>The transformations between water and ice have many implications across numerous fields of study. A better understanding of this process would benefit many areas of science and technology such as medicine, biology, and atmospheric and material sciences. In the present work the temperature dependence of the rate of growth (melting) of the basal face of hexagonal ice I(h) and the effect of system size are investigated in molecular dynamics simulations. Using an effective pair potential model of water, systems are studied over temperatures ranging from T(M) - 40 to T(M) + 16 K, where T(M) is the melting temperature of the model. It is found that the growth rates reach a maximum value of 0.7 Å ns(-1) (7 cm s(-1)) at about 12 K below the melting temperature. A noticeable effect of the system size on the melting temperature and ice growth rates is observed; it is shown that the size effect arises in smaller systems due to the artificial ordering under periodic conditions. The decrease in melting entropy in the smallest system by 0.4 J (mol K)(-1) relative to the largest system results in an up-shift in the melting temperature by about 2 K. An almost 60% increase in the maximum growth rate is observed for the smallest system.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c1cp21210a</identifier><identifier>PMID: 21792403</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biology ; Chemistry ; Crystal growth ; Crystallization ; Dynamical systems ; Dynamics ; Entropy ; Exact sciences and technology ; General and physical chemistry ; Melting ; Molecular Dynamics Simulation ; Phase Transition ; Temperature dependence ; Transformations ; Transition Temperature ; Water - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-09, Vol.13 (34), p.15501-15511</ispartof><rights>2015 INIST-CNRS</rights><rights>This journal is © the Owner Societies 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6274693c6301c128cb19b286495545006f07a98cd5c2a6dda5e014e28555dfd93</citedby><cites>FETCH-LOGICAL-c348t-6274693c6301c128cb19b286495545006f07a98cd5c2a6dda5e014e28555dfd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24488392$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21792403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROZMANOV, Dmitri</creatorcontrib><creatorcontrib>KUSALIK, Peter G</creatorcontrib><title>Temperature dependence of crystal growth of hexagonal ice (Ih)</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The transformations between water and ice have many implications across numerous fields of study. A better understanding of this process would benefit many areas of science and technology such as medicine, biology, and atmospheric and material sciences. In the present work the temperature dependence of the rate of growth (melting) of the basal face of hexagonal ice I(h) and the effect of system size are investigated in molecular dynamics simulations. Using an effective pair potential model of water, systems are studied over temperatures ranging from T(M) - 40 to T(M) + 16 K, where T(M) is the melting temperature of the model. It is found that the growth rates reach a maximum value of 0.7 Å ns(-1) (7 cm s(-1)) at about 12 K below the melting temperature. A noticeable effect of the system size on the melting temperature and ice growth rates is observed; it is shown that the size effect arises in smaller systems due to the artificial ordering under periodic conditions. The decrease in melting entropy in the smallest system by 0.4 J (mol K)(-1) relative to the largest system results in an up-shift in the melting temperature by about 2 K. An almost 60% increase in the maximum growth rate is observed for the smallest system.</description><subject>Biology</subject><subject>Chemistry</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Melting</subject><subject>Molecular Dynamics Simulation</subject><subject>Phase Transition</subject><subject>Temperature dependence</subject><subject>Transformations</subject><subject>Transition Temperature</subject><subject>Water - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0EtLw0AUBeBBFFurG3-AZCM-IDrvzGwKUnwUCm7qOkxnbtpIXs4kaP-9Ka3t0tW9HD7O4iB0SfADwUw_WmIbSijB5ggNCZcs1ljx4_2fyAE6C-ETY0wEYadoQEmiKcdsiMZzKBvwpu08RA4aqBxUFqI6i6xfh9YU0dLX3-1qk6zgxyzrqs_yntxOV3fn6CQzRYCL3R2hj5fn-eQtnr2_TidPs9gyrtpY0oRLzaxkmFhClV0QvaBKci0EFxjLDCdGK-uEpUY6ZwRgwoEqIYTLnGYjdLPtbXz91UFo0zIPForCVFB3IdWSKakT-b9Uiisusd7I-620vg7BQ5Y2Pi-NX6cEp5th08OwPb7a1XaLEtye_i3Zg-sdMMGaIvOmsnk4OM6VYpqyX1BDfe0</recordid><startdate>20110914</startdate><enddate>20110914</enddate><creator>ROZMANOV, Dmitri</creator><creator>KUSALIK, Peter G</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110914</creationdate><title>Temperature dependence of crystal growth of hexagonal ice (Ih)</title><author>ROZMANOV, Dmitri ; KUSALIK, Peter G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6274693c6301c128cb19b286495545006f07a98cd5c2a6dda5e014e28555dfd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Chemistry</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Melting</topic><topic>Molecular Dynamics Simulation</topic><topic>Phase Transition</topic><topic>Temperature dependence</topic><topic>Transformations</topic><topic>Transition Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROZMANOV, Dmitri</creatorcontrib><creatorcontrib>KUSALIK, Peter G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROZMANOV, Dmitri</au><au>KUSALIK, Peter G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature dependence of crystal growth of hexagonal ice (Ih)</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-09-14</date><risdate>2011</risdate><volume>13</volume><issue>34</issue><spage>15501</spage><epage>15511</epage><pages>15501-15511</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The transformations between water and ice have many implications across numerous fields of study. A better understanding of this process would benefit many areas of science and technology such as medicine, biology, and atmospheric and material sciences. In the present work the temperature dependence of the rate of growth (melting) of the basal face of hexagonal ice I(h) and the effect of system size are investigated in molecular dynamics simulations. Using an effective pair potential model of water, systems are studied over temperatures ranging from T(M) - 40 to T(M) + 16 K, where T(M) is the melting temperature of the model. It is found that the growth rates reach a maximum value of 0.7 Å ns(-1) (7 cm s(-1)) at about 12 K below the melting temperature. A noticeable effect of the system size on the melting temperature and ice growth rates is observed; it is shown that the size effect arises in smaller systems due to the artificial ordering under periodic conditions. The decrease in melting entropy in the smallest system by 0.4 J (mol K)(-1) relative to the largest system results in an up-shift in the melting temperature by about 2 K. An almost 60% increase in the maximum growth rate is observed for the smallest system.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21792403</pmid><doi>10.1039/c1cp21210a</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2011-09, Vol.13 (34), p.15501-15511 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_963869769 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biology Chemistry Crystal growth Crystallization Dynamical systems Dynamics Entropy Exact sciences and technology General and physical chemistry Melting Molecular Dynamics Simulation Phase Transition Temperature dependence Transformations Transition Temperature Water - chemistry |
title | Temperature dependence of crystal growth of hexagonal ice (Ih) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20dependence%20of%20crystal%20growth%20of%20hexagonal%20ice%20(Ih)&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=ROZMANOV,%20Dmitri&rft.date=2011-09-14&rft.volume=13&rft.issue=34&rft.spage=15501&rft.epage=15511&rft.pages=15501-15511&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c1cp21210a&rft_dat=%3Cproquest_cross%3E963869769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884846099&rft_id=info:pmid/21792403&rfr_iscdi=true |