Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylamm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2011-01, Vol.3 (11), p.4768-4773
Hauptverfasser: Sasidharan, Manickam, Nakashima, Kenichi, Gunawardhana, Nanda, Yokoi, Toshiyuki, Ito, Masanori, Inoue, Masamichi, Yusa, Shin-ichi, Yoshio, Masaki, Tatsumi, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4773
container_issue 11
container_start_page 4768
container_title Nanoscale
container_volume 3
creator Sasidharan, Manickam
Nakashima, Kenichi
Gunawardhana, Nanda
Yokoi, Toshiyuki
Ito, Masanori
Inoue, Masamichi
Yusa, Shin-ichi
Yoshio, Masaki
Tatsumi, Takashi
description Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.
doi_str_mv 10.1039/c1nr10804b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963867008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762132652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgih_Viz9AclOE6iSzm90cpfgFBT3oeUnS2Tayu6nJFvHfu6VVbwoDMwzPzOVl7FTAlQDU1050UUAJmd1hhxIyGCMWcvdnVtkBO0rpDUBpVLjPDqQEkEIXh8w-U_Rh5h0PcW66kHzjneGL0DThg3frzXJBkRI3Q3VhRrw1_XBjmsTrEHnj-4VftdyHjkdyCxPnZGxD3Jp-7Sgds7160HSy7SP2enf7MnkYT5_uHyc307HLRNGPLRkURiEo1CVqk9mZhLqssdBKG5GjzZGcrLUG6bSi3AiHpRTWlihEkeOInW_-LmN4X1Hqq9YnR01jOgqrVGmFpSoAyv8lSFVkqswGefGnFIWSAqXK5UAvN9TFkFKkulpG35r4WQmo1jlVvzkN-Gz7d2Vbmv3Q72DwC23kjeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762132652</pqid></control><display><type>article</type><title>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sasidharan, Manickam ; Nakashima, Kenichi ; Gunawardhana, Nanda ; Yokoi, Toshiyuki ; Ito, Masanori ; Inoue, Masamichi ; Yusa, Shin-ichi ; Yoshio, Masaki ; Tatsumi, Takashi</creator><creatorcontrib>Sasidharan, Manickam ; Nakashima, Kenichi ; Gunawardhana, Nanda ; Yokoi, Toshiyuki ; Ito, Masanori ; Inoue, Masamichi ; Yusa, Shin-ichi ; Yoshio, Masaki ; Tatsumi, Takashi</creatorcontrib><description>Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c1nr10804b</identifier><identifier>PMID: 22002197</identifier><language>eng</language><publisher>England</publisher><subject>Benzene ; Electric batteries ; Electric Power Supplies ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Ions ; Lithium - chemistry ; Micelles ; Nanospheres ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nuclear magnetic resonance ; Organic Chemicals - chemistry ; Oxides ; Particle Size ; Polystyrene resins ; Silicon Dioxide - chemistry</subject><ispartof>Nanoscale, 2011-01, Vol.3 (11), p.4768-4773</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</citedby><cites>FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasidharan, Manickam</creatorcontrib><creatorcontrib>Nakashima, Kenichi</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Yokoi, Toshiyuki</creatorcontrib><creatorcontrib>Ito, Masanori</creatorcontrib><creatorcontrib>Inoue, Masamichi</creatorcontrib><creatorcontrib>Yusa, Shin-ichi</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><creatorcontrib>Tatsumi, Takashi</creatorcontrib><title>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.</description><subject>Benzene</subject><subject>Electric batteries</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Ions</subject><subject>Lithium - chemistry</subject><subject>Micelles</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nuclear magnetic resonance</subject><subject>Organic Chemicals - chemistry</subject><subject>Oxides</subject><subject>Particle Size</subject><subject>Polystyrene resins</subject><subject>Silicon Dioxide - chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LAzEQBuAgih_Viz9AclOE6iSzm90cpfgFBT3oeUnS2Tayu6nJFvHfu6VVbwoDMwzPzOVl7FTAlQDU1050UUAJmd1hhxIyGCMWcvdnVtkBO0rpDUBpVLjPDqQEkEIXh8w-U_Rh5h0PcW66kHzjneGL0DThg3frzXJBkRI3Q3VhRrw1_XBjmsTrEHnj-4VftdyHjkdyCxPnZGxD3Jp-7Sgds7160HSy7SP2enf7MnkYT5_uHyc307HLRNGPLRkURiEo1CVqk9mZhLqssdBKG5GjzZGcrLUG6bSi3AiHpRTWlihEkeOInW_-LmN4X1Hqq9YnR01jOgqrVGmFpSoAyv8lSFVkqswGefGnFIWSAqXK5UAvN9TFkFKkulpG35r4WQmo1jlVvzkN-Gz7d2Vbmv3Q72DwC23kjeE</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Sasidharan, Manickam</creator><creator>Nakashima, Kenichi</creator><creator>Gunawardhana, Nanda</creator><creator>Yokoi, Toshiyuki</creator><creator>Ito, Masanori</creator><creator>Inoue, Masamichi</creator><creator>Yusa, Shin-ichi</creator><creator>Yoshio, Masaki</creator><creator>Tatsumi, Takashi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110101</creationdate><title>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</title><author>Sasidharan, Manickam ; Nakashima, Kenichi ; Gunawardhana, Nanda ; Yokoi, Toshiyuki ; Ito, Masanori ; Inoue, Masamichi ; Yusa, Shin-ichi ; Yoshio, Masaki ; Tatsumi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Benzene</topic><topic>Electric batteries</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Ions</topic><topic>Lithium - chemistry</topic><topic>Micelles</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nuclear magnetic resonance</topic><topic>Organic Chemicals - chemistry</topic><topic>Oxides</topic><topic>Particle Size</topic><topic>Polystyrene resins</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasidharan, Manickam</creatorcontrib><creatorcontrib>Nakashima, Kenichi</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Yokoi, Toshiyuki</creatorcontrib><creatorcontrib>Ito, Masanori</creatorcontrib><creatorcontrib>Inoue, Masamichi</creatorcontrib><creatorcontrib>Yusa, Shin-ichi</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><creatorcontrib>Tatsumi, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasidharan, Manickam</au><au>Nakashima, Kenichi</au><au>Gunawardhana, Nanda</au><au>Yokoi, Toshiyuki</au><au>Ito, Masanori</au><au>Inoue, Masamichi</au><au>Yusa, Shin-ichi</au><au>Yoshio, Masaki</au><au>Tatsumi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>3</volume><issue>11</issue><spage>4768</spage><epage>4773</epage><pages>4768-4773</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.</abstract><cop>England</cop><pmid>22002197</pmid><doi>10.1039/c1nr10804b</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2011-01, Vol.3 (11), p.4768-4773
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_963867008
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Benzene
Electric batteries
Electric Power Supplies
Electrodes
Equipment Design
Equipment Failure Analysis
Ions
Lithium - chemistry
Micelles
Nanospheres
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nuclear magnetic resonance
Organic Chemicals - chemistry
Oxides
Particle Size
Polystyrene resins
Silicon Dioxide - chemistry
title Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20organosilica%20hollow%20nanospheres%20as%20anode%20materials%20for%20lithium%20ion%20rechargeable%20batteries&rft.jtitle=Nanoscale&rft.au=Sasidharan,%20Manickam&rft.date=2011-01-01&rft.volume=3&rft.issue=11&rft.spage=4768&rft.epage=4773&rft.pages=4768-4773&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c1nr10804b&rft_dat=%3Cproquest_cross%3E1762132652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762132652&rft_id=info:pmid/22002197&rfr_iscdi=true