Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries
Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylamm...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2011-01, Vol.3 (11), p.4768-4773 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4773 |
---|---|
container_issue | 11 |
container_start_page | 4768 |
container_title | Nanoscale |
container_volume | 3 |
creator | Sasidharan, Manickam Nakashima, Kenichi Gunawardhana, Nanda Yokoi, Toshiyuki Ito, Masanori Inoue, Masamichi Yusa, Shin-ichi Yoshio, Masaki Tatsumi, Takashi |
description | Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles. |
doi_str_mv | 10.1039/c1nr10804b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963867008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762132652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgih_Viz9AclOE6iSzm90cpfgFBT3oeUnS2Tayu6nJFvHfu6VVbwoDMwzPzOVl7FTAlQDU1050UUAJmd1hhxIyGCMWcvdnVtkBO0rpDUBpVLjPDqQEkEIXh8w-U_Rh5h0PcW66kHzjneGL0DThg3frzXJBkRI3Q3VhRrw1_XBjmsTrEHnj-4VftdyHjkdyCxPnZGxD3Jp-7Sgds7160HSy7SP2enf7MnkYT5_uHyc307HLRNGPLRkURiEo1CVqk9mZhLqssdBKG5GjzZGcrLUG6bSi3AiHpRTWlihEkeOInW_-LmN4X1Hqq9YnR01jOgqrVGmFpSoAyv8lSFVkqswGefGnFIWSAqXK5UAvN9TFkFKkulpG35r4WQmo1jlVvzkN-Gz7d2Vbmv3Q72DwC23kjeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762132652</pqid></control><display><type>article</type><title>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sasidharan, Manickam ; Nakashima, Kenichi ; Gunawardhana, Nanda ; Yokoi, Toshiyuki ; Ito, Masanori ; Inoue, Masamichi ; Yusa, Shin-ichi ; Yoshio, Masaki ; Tatsumi, Takashi</creator><creatorcontrib>Sasidharan, Manickam ; Nakashima, Kenichi ; Gunawardhana, Nanda ; Yokoi, Toshiyuki ; Ito, Masanori ; Inoue, Masamichi ; Yusa, Shin-ichi ; Yoshio, Masaki ; Tatsumi, Takashi</creatorcontrib><description>Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c1nr10804b</identifier><identifier>PMID: 22002197</identifier><language>eng</language><publisher>England</publisher><subject>Benzene ; Electric batteries ; Electric Power Supplies ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Ions ; Lithium - chemistry ; Micelles ; Nanospheres ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nuclear magnetic resonance ; Organic Chemicals - chemistry ; Oxides ; Particle Size ; Polystyrene resins ; Silicon Dioxide - chemistry</subject><ispartof>Nanoscale, 2011-01, Vol.3 (11), p.4768-4773</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</citedby><cites>FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasidharan, Manickam</creatorcontrib><creatorcontrib>Nakashima, Kenichi</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Yokoi, Toshiyuki</creatorcontrib><creatorcontrib>Ito, Masanori</creatorcontrib><creatorcontrib>Inoue, Masamichi</creatorcontrib><creatorcontrib>Yusa, Shin-ichi</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><creatorcontrib>Tatsumi, Takashi</creatorcontrib><title>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.</description><subject>Benzene</subject><subject>Electric batteries</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Ions</subject><subject>Lithium - chemistry</subject><subject>Micelles</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nuclear magnetic resonance</subject><subject>Organic Chemicals - chemistry</subject><subject>Oxides</subject><subject>Particle Size</subject><subject>Polystyrene resins</subject><subject>Silicon Dioxide - chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LAzEQBuAgih_Viz9AclOE6iSzm90cpfgFBT3oeUnS2Tayu6nJFvHfu6VVbwoDMwzPzOVl7FTAlQDU1050UUAJmd1hhxIyGCMWcvdnVtkBO0rpDUBpVLjPDqQEkEIXh8w-U_Rh5h0PcW66kHzjneGL0DThg3frzXJBkRI3Q3VhRrw1_XBjmsTrEHnj-4VftdyHjkdyCxPnZGxD3Jp-7Sgds7160HSy7SP2enf7MnkYT5_uHyc307HLRNGPLRkURiEo1CVqk9mZhLqssdBKG5GjzZGcrLUG6bSi3AiHpRTWlihEkeOInW_-LmN4X1Hqq9YnR01jOgqrVGmFpSoAyv8lSFVkqswGefGnFIWSAqXK5UAvN9TFkFKkulpG35r4WQmo1jlVvzkN-Gz7d2Vbmv3Q72DwC23kjeE</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Sasidharan, Manickam</creator><creator>Nakashima, Kenichi</creator><creator>Gunawardhana, Nanda</creator><creator>Yokoi, Toshiyuki</creator><creator>Ito, Masanori</creator><creator>Inoue, Masamichi</creator><creator>Yusa, Shin-ichi</creator><creator>Yoshio, Masaki</creator><creator>Tatsumi, Takashi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110101</creationdate><title>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</title><author>Sasidharan, Manickam ; Nakashima, Kenichi ; Gunawardhana, Nanda ; Yokoi, Toshiyuki ; Ito, Masanori ; Inoue, Masamichi ; Yusa, Shin-ichi ; Yoshio, Masaki ; Tatsumi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-bea31a630639839a4bd20f8f37969a153b53ec2f9902c96e5a1c3821bb8311753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Benzene</topic><topic>Electric batteries</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Ions</topic><topic>Lithium - chemistry</topic><topic>Micelles</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nuclear magnetic resonance</topic><topic>Organic Chemicals - chemistry</topic><topic>Oxides</topic><topic>Particle Size</topic><topic>Polystyrene resins</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasidharan, Manickam</creatorcontrib><creatorcontrib>Nakashima, Kenichi</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Yokoi, Toshiyuki</creatorcontrib><creatorcontrib>Ito, Masanori</creatorcontrib><creatorcontrib>Inoue, Masamichi</creatorcontrib><creatorcontrib>Yusa, Shin-ichi</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><creatorcontrib>Tatsumi, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasidharan, Manickam</au><au>Nakashima, Kenichi</au><au>Gunawardhana, Nanda</au><au>Yokoi, Toshiyuki</au><au>Ito, Masanori</au><au>Inoue, Masamichi</au><au>Yusa, Shin-ichi</au><au>Yoshio, Masaki</au><au>Tatsumi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>3</volume><issue>11</issue><spage>4768</spage><epage>4773</epage><pages>4768-4773</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.</abstract><cop>England</cop><pmid>22002197</pmid><doi>10.1039/c1nr10804b</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2011-01, Vol.3 (11), p.4768-4773 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_963867008 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Benzene Electric batteries Electric Power Supplies Electrodes Equipment Design Equipment Failure Analysis Ions Lithium - chemistry Micelles Nanospheres Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Nuclear magnetic resonance Organic Chemicals - chemistry Oxides Particle Size Polystyrene resins Silicon Dioxide - chemistry |
title | Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20organosilica%20hollow%20nanospheres%20as%20anode%20materials%20for%20lithium%20ion%20rechargeable%20batteries&rft.jtitle=Nanoscale&rft.au=Sasidharan,%20Manickam&rft.date=2011-01-01&rft.volume=3&rft.issue=11&rft.spage=4768&rft.epage=4773&rft.pages=4768-4773&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c1nr10804b&rft_dat=%3Cproquest_cross%3E1762132652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762132652&rft_id=info:pmid/22002197&rfr_iscdi=true |