Bayesian models for the determination of resonant frequencies in a DI diesel engine

A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2012, Vol.26 (JAN), p.305-314
Hauptverfasser: Bodisco, Timothy, Reeves, Robert, Situ, Rong, Brown, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue JAN
container_start_page 305
container_title Mechanical systems and signal processing
container_volume 26
creator Bodisco, Timothy
Reeves, Robert
Situ, Rong
Brown, Richard
description A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information. ► Propose the use of Bayesian statistics in engine research. ► Demonstrate Bayesian model development to analyse in-cylinder pressure signals. ► Locate the resonant frequency of in-cylinder pressure signals. ► Establish a connection between frequency, temperature and trapped mass. ► Confirm the importance of considering inter-cycle variability.
doi_str_mv 10.1016/j.ymssp.2011.06.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963861934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327011002366</els_id><sourcerecordid>963861934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-43b13582cc91255437a5693c42e1cd1e30971c044778a9ce6fc72c1a7930dc33</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1UJLaFT8DFF8QpYSb22vGBA_0DVKrEgd4t40xarxJ78aSV9tuTZSuOnEYjvffmzU-I9wgtAppPu_YwM-_bDhBbMC2gfiU2CM402KE5Exvo-75RnYU34px5BwBOg9mIn5fhQJxClnMZaGI5liqXR5IDLVTnlMOSSpZllJW45JAXOVb6_UQ5JmKZsgzy-lYO60KTpPyQMr0Vr8cwMb17mRfi_uvN_dX35u7Ht9urL3dN1AhLo9UvVNu-i9Fht91qZcPWOBV1RxgHJAXOYgStre2Di2TGaLuIwToFQ1TqQnw8xe5rWQvx4ufEkaYpZCpP7J1RvUGn9KpUJ2WshbnS6Pc1zaEePII_AvQ7_xegPwL0YPwKcHV9eMkPHMM01rD-zP-snbZgsT_2-HzSrfjoOVH1vLLJkYZUKS5-KOm_d_4A_ryG6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963861934</pqid></control><display><type>article</type><title>Bayesian models for the determination of resonant frequencies in a DI diesel engine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bodisco, Timothy ; Reeves, Robert ; Situ, Rong ; Brown, Richard</creator><creatorcontrib>Bodisco, Timothy ; Reeves, Robert ; Situ, Rong ; Brown, Richard</creatorcontrib><description>A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information. ► Propose the use of Bayesian statistics in engine research. ► Demonstrate Bayesian model development to analyse in-cylinder pressure signals. ► Locate the resonant frequency of in-cylinder pressure signals. ► Establish a connection between frequency, temperature and trapped mass. ► Confirm the importance of considering inter-cycle variability.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2011.06.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Combustion chambers ; Computer simulation ; Diesel engines ; Engines and turbines ; Exact sciences and technology ; Inter-cycle variability ; Internal combustion engines: gazoline engine, diesel engines, etc ; Mathematical models ; MCMC ; Mechanical engineering. Machine design ; Mechanical systems ; Monte Carlo methods ; Resonant frequencies ; Resonant frequency ; Statistical inference ; Time series</subject><ispartof>Mechanical systems and signal processing, 2012, Vol.26 (JAN), p.305-314</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-43b13582cc91255437a5693c42e1cd1e30971c044778a9ce6fc72c1a7930dc33</citedby><cites>FETCH-LOGICAL-c410t-43b13582cc91255437a5693c42e1cd1e30971c044778a9ce6fc72c1a7930dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2011.06.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24707183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bodisco, Timothy</creatorcontrib><creatorcontrib>Reeves, Robert</creatorcontrib><creatorcontrib>Situ, Rong</creatorcontrib><creatorcontrib>Brown, Richard</creatorcontrib><title>Bayesian models for the determination of resonant frequencies in a DI diesel engine</title><title>Mechanical systems and signal processing</title><description>A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information. ► Propose the use of Bayesian statistics in engine research. ► Demonstrate Bayesian model development to analyse in-cylinder pressure signals. ► Locate the resonant frequency of in-cylinder pressure signals. ► Establish a connection between frequency, temperature and trapped mass. ► Confirm the importance of considering inter-cycle variability.</description><subject>Applied sciences</subject><subject>Combustion chambers</subject><subject>Computer simulation</subject><subject>Diesel engines</subject><subject>Engines and turbines</subject><subject>Exact sciences and technology</subject><subject>Inter-cycle variability</subject><subject>Internal combustion engines: gazoline engine, diesel engines, etc</subject><subject>Mathematical models</subject><subject>MCMC</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical systems</subject><subject>Monte Carlo methods</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Statistical inference</subject><subject>Time series</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1UJLaFT8DFF8QpYSb22vGBA_0DVKrEgd4t40xarxJ78aSV9tuTZSuOnEYjvffmzU-I9wgtAppPu_YwM-_bDhBbMC2gfiU2CM402KE5Exvo-75RnYU34px5BwBOg9mIn5fhQJxClnMZaGI5liqXR5IDLVTnlMOSSpZllJW45JAXOVb6_UQ5JmKZsgzy-lYO60KTpPyQMr0Vr8cwMb17mRfi_uvN_dX35u7Ht9urL3dN1AhLo9UvVNu-i9Fht91qZcPWOBV1RxgHJAXOYgStre2Di2TGaLuIwToFQ1TqQnw8xe5rWQvx4ufEkaYpZCpP7J1RvUGn9KpUJ2WshbnS6Pc1zaEePII_AvQ7_xegPwL0YPwKcHV9eMkPHMM01rD-zP-snbZgsT_2-HzSrfjoOVH1vLLJkYZUKS5-KOm_d_4A_ryG6w</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Bodisco, Timothy</creator><creator>Reeves, Robert</creator><creator>Situ, Rong</creator><creator>Brown, Richard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Bayesian models for the determination of resonant frequencies in a DI diesel engine</title><author>Bodisco, Timothy ; Reeves, Robert ; Situ, Rong ; Brown, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-43b13582cc91255437a5693c42e1cd1e30971c044778a9ce6fc72c1a7930dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Combustion chambers</topic><topic>Computer simulation</topic><topic>Diesel engines</topic><topic>Engines and turbines</topic><topic>Exact sciences and technology</topic><topic>Inter-cycle variability</topic><topic>Internal combustion engines: gazoline engine, diesel engines, etc</topic><topic>Mathematical models</topic><topic>MCMC</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical systems</topic><topic>Monte Carlo methods</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Statistical inference</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodisco, Timothy</creatorcontrib><creatorcontrib>Reeves, Robert</creatorcontrib><creatorcontrib>Situ, Rong</creatorcontrib><creatorcontrib>Brown, Richard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodisco, Timothy</au><au>Reeves, Robert</au><au>Situ, Rong</au><au>Brown, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian models for the determination of resonant frequencies in a DI diesel engine</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2012</date><risdate>2012</risdate><volume>26</volume><issue>JAN</issue><spage>305</spage><epage>314</epage><pages>305-314</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information. ► Propose the use of Bayesian statistics in engine research. ► Demonstrate Bayesian model development to analyse in-cylinder pressure signals. ► Locate the resonant frequency of in-cylinder pressure signals. ► Establish a connection between frequency, temperature and trapped mass. ► Confirm the importance of considering inter-cycle variability.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2011.06.014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2012, Vol.26 (JAN), p.305-314
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_963861934
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Combustion chambers
Computer simulation
Diesel engines
Engines and turbines
Exact sciences and technology
Inter-cycle variability
Internal combustion engines: gazoline engine, diesel engines, etc
Mathematical models
MCMC
Mechanical engineering. Machine design
Mechanical systems
Monte Carlo methods
Resonant frequencies
Resonant frequency
Statistical inference
Time series
title Bayesian models for the determination of resonant frequencies in a DI diesel engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20models%20for%20the%20determination%20of%20resonant%20frequencies%20in%20a%20DI%20diesel%20engine&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Bodisco,%20Timothy&rft.date=2012&rft.volume=26&rft.issue=JAN&rft.spage=305&rft.epage=314&rft.pages=305-314&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2011.06.014&rft_dat=%3Cproquest_cross%3E963861934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963861934&rft_id=info:pmid/&rft_els_id=S0888327011002366&rfr_iscdi=true