Derivation of the phase field equations from the thermodynamic extremal principle

Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2012, Vol.60 (1), p.396-406
Hauptverfasser: Svoboda, J., Fischer, F.D., McDowell, D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 1
container_start_page 396
container_title Acta materialia
container_volume 60
creator Svoboda, J.
Fischer, F.D.
McDowell, D.L.
description Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.
doi_str_mv 10.1016/j.actamat.2011.09.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963861876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411006914</els_id><sourcerecordid>963861876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4cb771685b7c684f0c29574e92ab66876d5a709c3e5025a052079754381330e83</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKsfQdiLeNo172xOIvUJBRH0HNLsLE3ZV5Ot2G9v-sCrh2EG5j_zn_khdE1wQTCRd6vCutG2diwoJqTAusCcn6AJKRXLKRfsNNVM6Fxywc_RRYwrjAlVHE_QxyME_21H33dZX2fjErJhaSNktYemymC92fdiVoe-3bdThLavtp1tvcvgZwzQ2iYbgu-cHxq4RGe1bSJcHfMUfT0_fc5e8_n7y9vsYZ47psiYc7dQishSLJSTJa-xo1ooDprahZSlkpWwCmvHQGAqLBYUK60EZyVhDEPJpuj2sHcI_XoDcTStjw6axnbQb6LRkpUyIZBJKQ5KF_oYA9QmHdvasDUEmx1BszJHgmZH0GBtEsE0d3N0sNHZpg42fRj_hilXJaVaJd39QQfp3W8PwUTnoXNQ-QBuNFXv_3H6BTxziLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963861876</pqid></control><display><type>article</type><title>Derivation of the phase field equations from the thermodynamic extremal principle</title><source>Elsevier ScienceDirect Journals</source><creator>Svoboda, J. ; Fischer, F.D. ; McDowell, D.L.</creator><creatorcontrib>Svoboda, J. ; Fischer, F.D. ; McDowell, D.L.</creatorcontrib><description>Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.09.044</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Driving ; Evolution ; Exact sciences and technology ; Grain boundary migration ; Mathematical analysis ; Mathematical models ; Metals. Metallurgy ; Migration ; Phase transformation ; Phase-field method ; Simulation ; Thermodynamic extremal principle ; Thermodynamic modelling ; Thermodynamics</subject><ispartof>Acta materialia, 2012, Vol.60 (1), p.396-406</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4cb771685b7c684f0c29574e92ab66876d5a709c3e5025a052079754381330e83</citedby><cites>FETCH-LOGICAL-c371t-4cb771685b7c684f0c29574e92ab66876d5a709c3e5025a052079754381330e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645411006914$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24782297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Svoboda, J.</creatorcontrib><creatorcontrib>Fischer, F.D.</creatorcontrib><creatorcontrib>McDowell, D.L.</creatorcontrib><title>Derivation of the phase field equations from the thermodynamic extremal principle</title><title>Acta materialia</title><description>Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.</description><subject>Applied sciences</subject><subject>Driving</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Grain boundary migration</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Migration</subject><subject>Phase transformation</subject><subject>Phase-field method</subject><subject>Simulation</subject><subject>Thermodynamic extremal principle</subject><subject>Thermodynamic modelling</subject><subject>Thermodynamics</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQx4MoWKsfQdiLeNo172xOIvUJBRH0HNLsLE3ZV5Ot2G9v-sCrh2EG5j_zn_khdE1wQTCRd6vCutG2diwoJqTAusCcn6AJKRXLKRfsNNVM6Fxywc_RRYwrjAlVHE_QxyME_21H33dZX2fjErJhaSNktYemymC92fdiVoe-3bdThLavtp1tvcvgZwzQ2iYbgu-cHxq4RGe1bSJcHfMUfT0_fc5e8_n7y9vsYZ47psiYc7dQishSLJSTJa-xo1ooDprahZSlkpWwCmvHQGAqLBYUK60EZyVhDEPJpuj2sHcI_XoDcTStjw6axnbQb6LRkpUyIZBJKQ5KF_oYA9QmHdvasDUEmx1BszJHgmZH0GBtEsE0d3N0sNHZpg42fRj_hilXJaVaJd39QQfp3W8PwUTnoXNQ-QBuNFXv_3H6BTxziLk</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Svoboda, J.</creator><creator>Fischer, F.D.</creator><creator>McDowell, D.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Derivation of the phase field equations from the thermodynamic extremal principle</title><author>Svoboda, J. ; Fischer, F.D. ; McDowell, D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4cb771685b7c684f0c29574e92ab66876d5a709c3e5025a052079754381330e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Driving</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Grain boundary migration</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Migration</topic><topic>Phase transformation</topic><topic>Phase-field method</topic><topic>Simulation</topic><topic>Thermodynamic extremal principle</topic><topic>Thermodynamic modelling</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svoboda, J.</creatorcontrib><creatorcontrib>Fischer, F.D.</creatorcontrib><creatorcontrib>McDowell, D.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svoboda, J.</au><au>Fischer, F.D.</au><au>McDowell, D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the phase field equations from the thermodynamic extremal principle</atitle><jtitle>Acta materialia</jtitle><date>2012</date><risdate>2012</risdate><volume>60</volume><issue>1</issue><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.09.044</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2012, Vol.60 (1), p.396-406
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_963861876
source Elsevier ScienceDirect Journals
subjects Applied sciences
Driving
Evolution
Exact sciences and technology
Grain boundary migration
Mathematical analysis
Mathematical models
Metals. Metallurgy
Migration
Phase transformation
Phase-field method
Simulation
Thermodynamic extremal principle
Thermodynamic modelling
Thermodynamics
title Derivation of the phase field equations from the thermodynamic extremal principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20phase%20field%20equations%20from%20the%20thermodynamic%20extremal%20principle&rft.jtitle=Acta%20materialia&rft.au=Svoboda,%20J.&rft.date=2012&rft.volume=60&rft.issue=1&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.09.044&rft_dat=%3Cproquest_cross%3E963861876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963861876&rft_id=info:pmid/&rft_els_id=S1359645411006914&rfr_iscdi=true