Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability

Poly(amic acid) (PAA) hybrids with organically modified montmorillonite (Cloisite 30B) were synthesized from N,N′‐dimethylacetamide (DMAc) solution. These hybrids were heated at various temperatures, yielding 64‐ to 68‐μm thick films of polyimide (PI)/Cloisite 30B hybrids with various clay contents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2011-11, Vol.51 (11), p.2143-2150
Hauptverfasser: Min, Ungki, Kim, Jeong-Cheol, Chang, Jin-Hae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2150
container_issue 11
container_start_page 2143
container_title Polymer engineering and science
container_volume 51
creator Min, Ungki
Kim, Jeong-Cheol
Chang, Jin-Hae
description Poly(amic acid) (PAA) hybrids with organically modified montmorillonite (Cloisite 30B) were synthesized from N,N′‐dimethylacetamide (DMAc) solution. These hybrids were heated at various temperatures, yielding 64‐ to 68‐μm thick films of polyimide (PI)/Cloisite 30B hybrids with various clay contents (0–1.5 wt%). The intercalation of PI chains among the organoclay particles was examined using wide‐angle X‐ray diffraction (XRD) and electron microscopy (TEM) techniques. The thermo‐optical properties were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and ultraviolet‐visible (UV–vis) spectrometry. The optimum thermal and oxygen barrier properties were observed for the hybrids containing 1.0 wt% Cloisite 30B; these properties were degraded gradually by further increases in the clay content. The presence of only 1.0 wt% Cloisite 30B in a PI hybrid film was found to result in an 83% reduction in the rate of O2 permeability with respect to that of the pure PI film. The PI hybrid films were found to exhibit excellent optical transparency and to be almost colorless. However, the transparency of the hybrid films decreased slightly with increasing organoclay content. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers
doi_str_mv 10.1002/pen.22059
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_963859881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A272104912</galeid><sourcerecordid>A272104912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5729-5cbcaaf7f62f2c80d072b66bd5c0dae3da9254a7e2e699a738f46dc9ac63e7243</originalsourceid><addsrcrecordid>eNp1klGL1DAUhYsoOK4--A-KIiJMZ9OkbRrflmUdF9ZxcUYEX8Kd9LaTtU1q0kH778044-LISCB5uN853Htzouh5SmYpIfS8RzOjlOTiQTRJ86xMaMGyh9GEEEYTVpbl4-iJ93cksCwXk6heOTC-B4dmiHvbjrrTFcYGjFW2663XA8a1bjv_Nl5t0HU2sf2gFbRx72yPbtDop3FnXb-xrW3GaQymihvwcSh2CGvd6mF8Gj2qofX47PCeRZ_fXa0u3yc3H-fXlxc3ico5FUmu1gqg5nVBa6pKUhFO10WxrnJFKkBWgaB5BhwpFkIAZ2WdFZUSoAqGnGbsLHq99w3Nfd-iH2SnvcK2BYN266UoWJmLskwD-eIf8s5unQnNSUEYIznnJEAv91ADLUptajs4UDtLeUE5TUkmUhqo5ATVoEEHrTUY1ofH_OwEH06FnVYnBW-OBIEZ8OfQwNZ7eb38dMxO_2LXW68N-nB53WwGv5ecslbOeu-wlr3THbhRpkTuEiVDouTvRAX21WFl4EMA6pAcpf29gGYFZYTvPuF8z_0Ic4z_N5S3V4s_zocNah8Gu1eA-yYLznguvyzmUny9XfDlh7lcsl_gmOe4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903305770</pqid></control><display><type>article</type><title>Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Min, Ungki ; Kim, Jeong-Cheol ; Chang, Jin-Hae</creator><creatorcontrib>Min, Ungki ; Kim, Jeong-Cheol ; Chang, Jin-Hae</creatorcontrib><description>Poly(amic acid) (PAA) hybrids with organically modified montmorillonite (Cloisite 30B) were synthesized from N,N′‐dimethylacetamide (DMAc) solution. These hybrids were heated at various temperatures, yielding 64‐ to 68‐μm thick films of polyimide (PI)/Cloisite 30B hybrids with various clay contents (0–1.5 wt%). The intercalation of PI chains among the organoclay particles was examined using wide‐angle X‐ray diffraction (XRD) and electron microscopy (TEM) techniques. The thermo‐optical properties were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and ultraviolet‐visible (UV–vis) spectrometry. The optimum thermal and oxygen barrier properties were observed for the hybrids containing 1.0 wt% Cloisite 30B; these properties were degraded gradually by further increases in the clay content. The presence of only 1.0 wt% Cloisite 30B in a PI hybrid film was found to result in an 83% reduction in the rate of O2 permeability with respect to that of the pure PI film. The PI hybrid films were found to exhibit excellent optical transparency and to be almost colorless. However, the transparency of the hybrid films decreased slightly with increasing organoclay content. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.22059</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical properties ; Clay (material) ; Composites ; Dielectric films ; Differential scanning calorimetry ; Exact sciences and technology ; Forms of application and semi-finished materials ; Morphology ; Nanocomposites ; Nanostructure ; Optical properties ; Permeability ; Polyimide resins ; Polyimides ; Polymer industry, paints, wood ; Polymeric composites ; Reduction ; Technology of polymers ; Thermal properties ; Thermogravimetric analysis ; Thick films ; Thin films</subject><ispartof>Polymer engineering and science, 2011-11, Vol.51 (11), p.2143-2150</ispartof><rights>Copyright © 2011 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Society of Plastics Engineers, Inc.</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5729-5cbcaaf7f62f2c80d072b66bd5c0dae3da9254a7e2e699a738f46dc9ac63e7243</citedby><cites>FETCH-LOGICAL-c5729-5cbcaaf7f62f2c80d072b66bd5c0dae3da9254a7e2e699a738f46dc9ac63e7243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.22059$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.22059$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,1414,23913,23914,25123,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24623074$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Ungki</creatorcontrib><creatorcontrib>Kim, Jeong-Cheol</creatorcontrib><creatorcontrib>Chang, Jin-Hae</creatorcontrib><title>Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Poly(amic acid) (PAA) hybrids with organically modified montmorillonite (Cloisite 30B) were synthesized from N,N′‐dimethylacetamide (DMAc) solution. These hybrids were heated at various temperatures, yielding 64‐ to 68‐μm thick films of polyimide (PI)/Cloisite 30B hybrids with various clay contents (0–1.5 wt%). The intercalation of PI chains among the organoclay particles was examined using wide‐angle X‐ray diffraction (XRD) and electron microscopy (TEM) techniques. The thermo‐optical properties were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and ultraviolet‐visible (UV–vis) spectrometry. The optimum thermal and oxygen barrier properties were observed for the hybrids containing 1.0 wt% Cloisite 30B; these properties were degraded gradually by further increases in the clay content. The presence of only 1.0 wt% Cloisite 30B in a PI hybrid film was found to result in an 83% reduction in the rate of O2 permeability with respect to that of the pure PI film. The PI hybrid films were found to exhibit excellent optical transparency and to be almost colorless. However, the transparency of the hybrid films decreased slightly with increasing organoclay content. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Chemical properties</subject><subject>Clay (material)</subject><subject>Composites</subject><subject>Dielectric films</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Permeability</subject><subject>Polyimide resins</subject><subject>Polyimides</subject><subject>Polymer industry, paints, wood</subject><subject>Polymeric composites</subject><subject>Reduction</subject><subject>Technology of polymers</subject><subject>Thermal properties</subject><subject>Thermogravimetric analysis</subject><subject>Thick films</subject><subject>Thin films</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1klGL1DAUhYsoOK4--A-KIiJMZ9OkbRrflmUdF9ZxcUYEX8Kd9LaTtU1q0kH778044-LISCB5uN853Htzouh5SmYpIfS8RzOjlOTiQTRJ86xMaMGyh9GEEEYTVpbl4-iJ93cksCwXk6heOTC-B4dmiHvbjrrTFcYGjFW2663XA8a1bjv_Nl5t0HU2sf2gFbRx72yPbtDop3FnXb-xrW3GaQymihvwcSh2CGvd6mF8Gj2qofX47PCeRZ_fXa0u3yc3H-fXlxc3ico5FUmu1gqg5nVBa6pKUhFO10WxrnJFKkBWgaB5BhwpFkIAZ2WdFZUSoAqGnGbsLHq99w3Nfd-iH2SnvcK2BYN266UoWJmLskwD-eIf8s5unQnNSUEYIznnJEAv91ADLUptajs4UDtLeUE5TUkmUhqo5ATVoEEHrTUY1ofH_OwEH06FnVYnBW-OBIEZ8OfQwNZ7eb38dMxO_2LXW68N-nB53WwGv5ecslbOeu-wlr3THbhRpkTuEiVDouTvRAX21WFl4EMA6pAcpf29gGYFZYTvPuF8z_0Ic4z_N5S3V4s_zocNah8Gu1eA-yYLznguvyzmUny9XfDlh7lcsl_gmOe4</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Min, Ungki</creator><creator>Kim, Jeong-Cheol</creator><creator>Chang, Jin-Hae</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201111</creationdate><title>Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability</title><author>Min, Ungki ; Kim, Jeong-Cheol ; Chang, Jin-Hae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5729-5cbcaaf7f62f2c80d072b66bd5c0dae3da9254a7e2e699a738f46dc9ac63e7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemical properties</topic><topic>Clay (material)</topic><topic>Composites</topic><topic>Dielectric films</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Permeability</topic><topic>Polyimide resins</topic><topic>Polyimides</topic><topic>Polymer industry, paints, wood</topic><topic>Polymeric composites</topic><topic>Reduction</topic><topic>Technology of polymers</topic><topic>Thermal properties</topic><topic>Thermogravimetric analysis</topic><topic>Thick films</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Ungki</creatorcontrib><creatorcontrib>Kim, Jeong-Cheol</creatorcontrib><creatorcontrib>Chang, Jin-Hae</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Ungki</au><au>Kim, Jeong-Cheol</au><au>Chang, Jin-Hae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2011-11</date><risdate>2011</risdate><volume>51</volume><issue>11</issue><spage>2143</spage><epage>2150</epage><pages>2143-2150</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Poly(amic acid) (PAA) hybrids with organically modified montmorillonite (Cloisite 30B) were synthesized from N,N′‐dimethylacetamide (DMAc) solution. These hybrids were heated at various temperatures, yielding 64‐ to 68‐μm thick films of polyimide (PI)/Cloisite 30B hybrids with various clay contents (0–1.5 wt%). The intercalation of PI chains among the organoclay particles was examined using wide‐angle X‐ray diffraction (XRD) and electron microscopy (TEM) techniques. The thermo‐optical properties were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and ultraviolet‐visible (UV–vis) spectrometry. The optimum thermal and oxygen barrier properties were observed for the hybrids containing 1.0 wt% Cloisite 30B; these properties were degraded gradually by further increases in the clay content. The presence of only 1.0 wt% Cloisite 30B in a PI hybrid film was found to result in an 83% reduction in the rate of O2 permeability with respect to that of the pure PI film. The PI hybrid films were found to exhibit excellent optical transparency and to be almost colorless. However, the transparency of the hybrid films decreased slightly with increasing organoclay content. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.22059</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2011-11, Vol.51 (11), p.2143-2150
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_963859881
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Chemical properties
Clay (material)
Composites
Dielectric films
Differential scanning calorimetry
Exact sciences and technology
Forms of application and semi-finished materials
Morphology
Nanocomposites
Nanostructure
Optical properties
Permeability
Polyimide resins
Polyimides
Polymer industry, paints, wood
Polymeric composites
Reduction
Technology of polymers
Thermal properties
Thermogravimetric analysis
Thick films
Thin films
title Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20polyimide%20nanocomposite%20films:%20Thermo-optical%20properties,%20morphology,%20and%20gas%20permeability&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Min,%20Ungki&rft.date=2011-11&rft.volume=51&rft.issue=11&rft.spage=2143&rft.epage=2150&rft.pages=2143-2150&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.22059&rft_dat=%3Cgale_proqu%3EA272104912%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903305770&rft_id=info:pmid/&rft_galeid=A272104912&rfr_iscdi=true