A refined plate theory for functionally graded plates resting on elastic foundation
► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and fr...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2011-11, Vol.71 (16), p.1850-1858 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1858 |
---|---|
container_issue | 16 |
container_start_page | 1850 |
container_title | Composites science and technology |
container_volume | 71 |
creator | Thai, Huu-Tai Choi, Dong-Ho |
description | ► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency.
A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory. |
doi_str_mv | 10.1016/j.compscitech.2011.08.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963858878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381100306X</els_id><sourcerecordid>963858878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</originalsourceid><addsrcrecordid>eNqNkEFrGzEQhUVoIW7S_7A9lJ52M1p5V9LRmDYtGHJocxbyaNaWWUuutA7431fGTskxpxmY772ZeYx94dBw4P3DrsG4P2T0E-G2aYHzBlRTJjdsxpXUNYcOPrAZtH1fi06oW_Yp5x0AyE63M_Z7USUafCBXHUY7UTVtKaZTNcRUDceAk4_BjuOp2iTrXqFcNHnyYVPFUNFoS49FcQzOnvl79nGwY6bP13rHnn98_7P8Wa-eHn8tF6sahRJTbW2r14MjjWJNkpwol86lUwhSE7reae6wc9B1beugJwfYW-BiLteOOiXFHft28T2k-PdYLjJ7n5HG0QaKx2x0L1SnlFSF1BcSU8y5PGwOye9tOhkO5pyj2Zk3OZpzjgaUKZOi_XrdYjPacUg2oM__Ddq5bDUXunDLC0fl5RdPyRQ3CkjOJ8LJuOjfse0fQl-Qzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963858878</pqid></control><display><type>article</type><title>A refined plate theory for functionally graded plates resting on elastic foundation</title><source>Elsevier ScienceDirect Journals</source><creator>Thai, Huu-Tai ; Choi, Dong-Ho</creator><creatorcontrib>Thai, Huu-Tai ; Choi, Dong-Ho</creatorcontrib><description>► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency.
A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2011.08.016</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Functional composites ; B. Vibration ; C. Buckling ; C. Plate theory ; Constituents ; Exact sciences and technology ; Exact solutions ; Foundations ; Functionally gradient materials ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Physics ; Plate theory ; Shear ; Shear deformation ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Composites science and technology, 2011-11, Vol.71 (16), p.1850-1858</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</citedby><cites>FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026635381100306X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24729139$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thai, Huu-Tai</creatorcontrib><creatorcontrib>Choi, Dong-Ho</creatorcontrib><title>A refined plate theory for functionally graded plates resting on elastic foundation</title><title>Composites science and technology</title><description>► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency.
A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.</description><subject>A. Functional composites</subject><subject>B. Vibration</subject><subject>C. Buckling</subject><subject>C. Plate theory</subject><subject>Constituents</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Foundations</subject><subject>Functionally gradient materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Plate theory</subject><subject>Shear</subject><subject>Shear deformation</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEFrGzEQhUVoIW7S_7A9lJ52M1p5V9LRmDYtGHJocxbyaNaWWUuutA7431fGTskxpxmY772ZeYx94dBw4P3DrsG4P2T0E-G2aYHzBlRTJjdsxpXUNYcOPrAZtH1fi06oW_Yp5x0AyE63M_Z7USUafCBXHUY7UTVtKaZTNcRUDceAk4_BjuOp2iTrXqFcNHnyYVPFUNFoS49FcQzOnvl79nGwY6bP13rHnn98_7P8Wa-eHn8tF6sahRJTbW2r14MjjWJNkpwol86lUwhSE7reae6wc9B1beugJwfYW-BiLteOOiXFHft28T2k-PdYLjJ7n5HG0QaKx2x0L1SnlFSF1BcSU8y5PGwOye9tOhkO5pyj2Zk3OZpzjgaUKZOi_XrdYjPacUg2oM__Ddq5bDUXunDLC0fl5RdPyRQ3CkjOJ8LJuOjfse0fQl-Qzw</recordid><startdate>20111114</startdate><enddate>20111114</enddate><creator>Thai, Huu-Tai</creator><creator>Choi, Dong-Ho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111114</creationdate><title>A refined plate theory for functionally graded plates resting on elastic foundation</title><author>Thai, Huu-Tai ; Choi, Dong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Functional composites</topic><topic>B. Vibration</topic><topic>C. Buckling</topic><topic>C. Plate theory</topic><topic>Constituents</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Foundations</topic><topic>Functionally gradient materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Plate theory</topic><topic>Shear</topic><topic>Shear deformation</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thai, Huu-Tai</creatorcontrib><creatorcontrib>Choi, Dong-Ho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thai, Huu-Tai</au><au>Choi, Dong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A refined plate theory for functionally graded plates resting on elastic foundation</atitle><jtitle>Composites science and technology</jtitle><date>2011-11-14</date><risdate>2011</risdate><volume>71</volume><issue>16</issue><spage>1850</spage><epage>1858</epage><pages>1850-1858</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency.
A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2011.08.016</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2011-11, Vol.71 (16), p.1850-1858 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_963858878 |
source | Elsevier ScienceDirect Journals |
subjects | A. Functional composites B. Vibration C. Buckling C. Plate theory Constituents Exact sciences and technology Exact solutions Foundations Functionally gradient materials Fundamental areas of phenomenology (including applications) Mathematical models Physics Plate theory Shear Shear deformation Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | A refined plate theory for functionally graded plates resting on elastic foundation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20refined%20plate%20theory%20for%20functionally%20graded%20plates%20resting%20on%20elastic%20foundation&rft.jtitle=Composites%20science%20and%20technology&rft.au=Thai,%20Huu-Tai&rft.date=2011-11-14&rft.volume=71&rft.issue=16&rft.spage=1850&rft.epage=1858&rft.pages=1850-1858&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2011.08.016&rft_dat=%3Cproquest_cross%3E963858878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963858878&rft_id=info:pmid/&rft_els_id=S026635381100306X&rfr_iscdi=true |