A refined plate theory for functionally graded plates resting on elastic foundation

► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2011-11, Vol.71 (16), p.1850-1858
Hauptverfasser: Thai, Huu-Tai, Choi, Dong-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1858
container_issue 16
container_start_page 1850
container_title Composites science and technology
container_volume 71
creator Thai, Huu-Tai
Choi, Dong-Ho
description ► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency. A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.
doi_str_mv 10.1016/j.compscitech.2011.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963858878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381100306X</els_id><sourcerecordid>963858878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</originalsourceid><addsrcrecordid>eNqNkEFrGzEQhUVoIW7S_7A9lJ52M1p5V9LRmDYtGHJocxbyaNaWWUuutA7431fGTskxpxmY772ZeYx94dBw4P3DrsG4P2T0E-G2aYHzBlRTJjdsxpXUNYcOPrAZtH1fi06oW_Yp5x0AyE63M_Z7USUafCBXHUY7UTVtKaZTNcRUDceAk4_BjuOp2iTrXqFcNHnyYVPFUNFoS49FcQzOnvl79nGwY6bP13rHnn98_7P8Wa-eHn8tF6sahRJTbW2r14MjjWJNkpwol86lUwhSE7reae6wc9B1beugJwfYW-BiLteOOiXFHft28T2k-PdYLjJ7n5HG0QaKx2x0L1SnlFSF1BcSU8y5PGwOye9tOhkO5pyj2Zk3OZpzjgaUKZOi_XrdYjPacUg2oM__Ddq5bDUXunDLC0fl5RdPyRQ3CkjOJ8LJuOjfse0fQl-Qzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963858878</pqid></control><display><type>article</type><title>A refined plate theory for functionally graded plates resting on elastic foundation</title><source>Elsevier ScienceDirect Journals</source><creator>Thai, Huu-Tai ; Choi, Dong-Ho</creator><creatorcontrib>Thai, Huu-Tai ; Choi, Dong-Ho</creatorcontrib><description>► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency. A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2011.08.016</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Functional composites ; B. Vibration ; C. Buckling ; C. Plate theory ; Constituents ; Exact sciences and technology ; Exact solutions ; Foundations ; Functionally gradient materials ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Physics ; Plate theory ; Shear ; Shear deformation ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Composites science and technology, 2011-11, Vol.71 (16), p.1850-1858</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</citedby><cites>FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026635381100306X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24729139$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thai, Huu-Tai</creatorcontrib><creatorcontrib>Choi, Dong-Ho</creatorcontrib><title>A refined plate theory for functionally graded plates resting on elastic foundation</title><title>Composites science and technology</title><description>► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency. A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.</description><subject>A. Functional composites</subject><subject>B. Vibration</subject><subject>C. Buckling</subject><subject>C. Plate theory</subject><subject>Constituents</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Foundations</subject><subject>Functionally gradient materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Plate theory</subject><subject>Shear</subject><subject>Shear deformation</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEFrGzEQhUVoIW7S_7A9lJ52M1p5V9LRmDYtGHJocxbyaNaWWUuutA7431fGTskxpxmY772ZeYx94dBw4P3DrsG4P2T0E-G2aYHzBlRTJjdsxpXUNYcOPrAZtH1fi06oW_Yp5x0AyE63M_Z7USUafCBXHUY7UTVtKaZTNcRUDceAk4_BjuOp2iTrXqFcNHnyYVPFUNFoS49FcQzOnvl79nGwY6bP13rHnn98_7P8Wa-eHn8tF6sahRJTbW2r14MjjWJNkpwol86lUwhSE7reae6wc9B1beugJwfYW-BiLteOOiXFHft28T2k-PdYLjJ7n5HG0QaKx2x0L1SnlFSF1BcSU8y5PGwOye9tOhkO5pyj2Zk3OZpzjgaUKZOi_XrdYjPacUg2oM__Ddq5bDUXunDLC0fl5RdPyRQ3CkjOJ8LJuOjfse0fQl-Qzw</recordid><startdate>20111114</startdate><enddate>20111114</enddate><creator>Thai, Huu-Tai</creator><creator>Choi, Dong-Ho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111114</creationdate><title>A refined plate theory for functionally graded plates resting on elastic foundation</title><author>Thai, Huu-Tai ; Choi, Dong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-aa29bfde9c3be7ed305047d8c079ecd6d91dc5d05522d06ed0c6a01347bde5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Functional composites</topic><topic>B. Vibration</topic><topic>C. Buckling</topic><topic>C. Plate theory</topic><topic>Constituents</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Foundations</topic><topic>Functionally gradient materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Plate theory</topic><topic>Shear</topic><topic>Shear deformation</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thai, Huu-Tai</creatorcontrib><creatorcontrib>Choi, Dong-Ho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thai, Huu-Tai</au><au>Choi, Dong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A refined plate theory for functionally graded plates resting on elastic foundation</atitle><jtitle>Composites science and technology</jtitle><date>2011-11-14</date><risdate>2011</risdate><volume>71</volume><issue>16</issue><spage>1850</spage><epage>1858</epage><pages>1850-1858</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>► A refined theory is proposed for functionally graded plates on elastic foundation. ► The theory contains four unknowns and does not require shear correction factor. ► Closed-form solutions are derived for rectangular plates. ► The theory can accurately predict the deflection, buckling load, and frequency. A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2011.08.016</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2011-11, Vol.71 (16), p.1850-1858
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_963858878
source Elsevier ScienceDirect Journals
subjects A. Functional composites
B. Vibration
C. Buckling
C. Plate theory
Constituents
Exact sciences and technology
Exact solutions
Foundations
Functionally gradient materials
Fundamental areas of phenomenology (including applications)
Mathematical models
Physics
Plate theory
Shear
Shear deformation
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title A refined plate theory for functionally graded plates resting on elastic foundation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20refined%20plate%20theory%20for%20functionally%20graded%20plates%20resting%20on%20elastic%20foundation&rft.jtitle=Composites%20science%20and%20technology&rft.au=Thai,%20Huu-Tai&rft.date=2011-11-14&rft.volume=71&rft.issue=16&rft.spage=1850&rft.epage=1858&rft.pages=1850-1858&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2011.08.016&rft_dat=%3Cproquest_cross%3E963858878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963858878&rft_id=info:pmid/&rft_els_id=S026635381100306X&rfr_iscdi=true