Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver
We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementatio...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2012, Vol.183 (1), p.38-45 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Computer physics communications |
container_volume | 183 |
creator | Bigaouette, Nicolas Ackad, Edward Ramunno, Lora |
description | We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion (
H
2
+
) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude.
► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H
2+ FDTD simulations show increased accuracy and reduction in running time. |
doi_str_mv | 10.1016/j.cpc.2011.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963855545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465511002839</els_id><sourcerecordid>1770351946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKcfwFtuerA1afOnxZNsToWhB-dRQpq8nRld2yXdwC_mF_CLmTHPnh4Cz_NCfghdUpJSQsXtKjW9STNCaUqKNOIIjWghyyQrGTtGI0IoSZjg_BSdhbAihEhZ5iP08dK1jWtBe7z0zuK17nvXLnFE48DiocO6xbPpYppUOoC9wettM7jEQDuAx_kUv5lP__NtYxTfsNnqwXUtDl2zA3-OTmrdBLj44xi9zx4Wk6dk_vr4PLmfJ4ZlxZBwKqC0WlQVLwnJMlPXorBQSw2Wl8yKqrZUF7XmEqQFyZjMmKEsE7WttOD5GF0d7va-22whDGrtgoGm0S1026BKkRecc7Y3r_81qZQk57RkIqr0oBrfheChVr13a-2_FCVqP7paqTi62o-uSKEiYnN3aCD-dufAq2ActAas82AGZTv3T_0LGkKK4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770351946</pqid></control><display><type>article</type><title>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bigaouette, Nicolas ; Ackad, Edward ; Ramunno, Lora</creator><creatorcontrib>Bigaouette, Nicolas ; Ackad, Edward ; Ramunno, Lora</creatorcontrib><description>We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion (
H
2
+
) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude.
► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H
2+ FDTD simulations show increased accuracy and reduction in running time.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2011.08.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy ; Coulomb potential ; Finite-difference time domain ; Mapping ; Nonlinear grid mapping ; Nonlinearity ; Partial differential equations ; Quantum mechanics ; Schroedinger equation ; Simplification ; Solvers ; Three dimensional ; Time-dependent Schrödinger equation</subject><ispartof>Computer physics communications, 2012, Vol.183 (1), p.38-45</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</citedby><cites>FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2011.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bigaouette, Nicolas</creatorcontrib><creatorcontrib>Ackad, Edward</creatorcontrib><creatorcontrib>Ramunno, Lora</creatorcontrib><title>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</title><title>Computer physics communications</title><description>We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion (
H
2
+
) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude.
► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H
2+ FDTD simulations show increased accuracy and reduction in running time.</description><subject>Accuracy</subject><subject>Coulomb potential</subject><subject>Finite-difference time domain</subject><subject>Mapping</subject><subject>Nonlinear grid mapping</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Quantum mechanics</subject><subject>Schroedinger equation</subject><subject>Simplification</subject><subject>Solvers</subject><subject>Three dimensional</subject><subject>Time-dependent Schrödinger equation</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKcfwFtuerA1afOnxZNsToWhB-dRQpq8nRld2yXdwC_mF_CLmTHPnh4Cz_NCfghdUpJSQsXtKjW9STNCaUqKNOIIjWghyyQrGTtGI0IoSZjg_BSdhbAihEhZ5iP08dK1jWtBe7z0zuK17nvXLnFE48DiocO6xbPpYppUOoC9wettM7jEQDuAx_kUv5lP__NtYxTfsNnqwXUtDl2zA3-OTmrdBLj44xi9zx4Wk6dk_vr4PLmfJ4ZlxZBwKqC0WlQVLwnJMlPXorBQSw2Wl8yKqrZUF7XmEqQFyZjMmKEsE7WttOD5GF0d7va-22whDGrtgoGm0S1026BKkRecc7Y3r_81qZQk57RkIqr0oBrfheChVr13a-2_FCVqP7paqTi62o-uSKEiYnN3aCD-dufAq2ActAas82AGZTv3T_0LGkKK4g</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Bigaouette, Nicolas</creator><creator>Ackad, Edward</creator><creator>Ramunno, Lora</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</title><author>Bigaouette, Nicolas ; Ackad, Edward ; Ramunno, Lora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Coulomb potential</topic><topic>Finite-difference time domain</topic><topic>Mapping</topic><topic>Nonlinear grid mapping</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Quantum mechanics</topic><topic>Schroedinger equation</topic><topic>Simplification</topic><topic>Solvers</topic><topic>Three dimensional</topic><topic>Time-dependent Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bigaouette, Nicolas</creatorcontrib><creatorcontrib>Ackad, Edward</creatorcontrib><creatorcontrib>Ramunno, Lora</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bigaouette, Nicolas</au><au>Ackad, Edward</au><au>Ramunno, Lora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</atitle><jtitle>Computer physics communications</jtitle><date>2012</date><risdate>2012</risdate><volume>183</volume><issue>1</issue><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion (
H
2
+
) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude.
► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H
2+ FDTD simulations show increased accuracy and reduction in running time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2011.08.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2012, Vol.183 (1), p.38-45 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_963855545 |
source | Access via ScienceDirect (Elsevier) |
subjects | Accuracy Coulomb potential Finite-difference time domain Mapping Nonlinear grid mapping Nonlinearity Partial differential equations Quantum mechanics Schroedinger equation Simplification Solvers Three dimensional Time-dependent Schrödinger equation |
title | Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20grid%20mapping%20applied%20to%20an%20FDTD-based,%20multi-center%203D%20Schr%C3%B6dinger%20equation%20solver&rft.jtitle=Computer%20physics%20communications&rft.au=Bigaouette,%20Nicolas&rft.date=2012&rft.volume=183&rft.issue=1&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2011.08.011&rft_dat=%3Cproquest_cross%3E1770351946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770351946&rft_id=info:pmid/&rft_els_id=S0010465511002839&rfr_iscdi=true |