Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver

We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2012, Vol.183 (1), p.38-45
Hauptverfasser: Bigaouette, Nicolas, Ackad, Edward, Ramunno, Lora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 38
container_title Computer physics communications
container_volume 183
creator Bigaouette, Nicolas
Ackad, Edward
Ramunno, Lora
description We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion ( H 2 + ) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude. ► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H 2+ FDTD simulations show increased accuracy and reduction in running time.
doi_str_mv 10.1016/j.cpc.2011.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963855545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465511002839</els_id><sourcerecordid>1770351946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKcfwFtuerA1afOnxZNsToWhB-dRQpq8nRld2yXdwC_mF_CLmTHPnh4Cz_NCfghdUpJSQsXtKjW9STNCaUqKNOIIjWghyyQrGTtGI0IoSZjg_BSdhbAihEhZ5iP08dK1jWtBe7z0zuK17nvXLnFE48DiocO6xbPpYppUOoC9wettM7jEQDuAx_kUv5lP__NtYxTfsNnqwXUtDl2zA3-OTmrdBLj44xi9zx4Wk6dk_vr4PLmfJ4ZlxZBwKqC0WlQVLwnJMlPXorBQSw2Wl8yKqrZUF7XmEqQFyZjMmKEsE7WttOD5GF0d7va-22whDGrtgoGm0S1026BKkRecc7Y3r_81qZQk57RkIqr0oBrfheChVr13a-2_FCVqP7paqTi62o-uSKEiYnN3aCD-dufAq2ActAas82AGZTv3T_0LGkKK4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770351946</pqid></control><display><type>article</type><title>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bigaouette, Nicolas ; Ackad, Edward ; Ramunno, Lora</creator><creatorcontrib>Bigaouette, Nicolas ; Ackad, Edward ; Ramunno, Lora</creatorcontrib><description>We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion ( H 2 + ) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude. ► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H 2+ FDTD simulations show increased accuracy and reduction in running time.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2011.08.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy ; Coulomb potential ; Finite-difference time domain ; Mapping ; Nonlinear grid mapping ; Nonlinearity ; Partial differential equations ; Quantum mechanics ; Schroedinger equation ; Simplification ; Solvers ; Three dimensional ; Time-dependent Schrödinger equation</subject><ispartof>Computer physics communications, 2012, Vol.183 (1), p.38-45</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</citedby><cites>FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2011.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bigaouette, Nicolas</creatorcontrib><creatorcontrib>Ackad, Edward</creatorcontrib><creatorcontrib>Ramunno, Lora</creatorcontrib><title>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</title><title>Computer physics communications</title><description>We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion ( H 2 + ) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude. ► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H 2+ FDTD simulations show increased accuracy and reduction in running time.</description><subject>Accuracy</subject><subject>Coulomb potential</subject><subject>Finite-difference time domain</subject><subject>Mapping</subject><subject>Nonlinear grid mapping</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Quantum mechanics</subject><subject>Schroedinger equation</subject><subject>Simplification</subject><subject>Solvers</subject><subject>Three dimensional</subject><subject>Time-dependent Schrödinger equation</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKcfwFtuerA1afOnxZNsToWhB-dRQpq8nRld2yXdwC_mF_CLmTHPnh4Cz_NCfghdUpJSQsXtKjW9STNCaUqKNOIIjWghyyQrGTtGI0IoSZjg_BSdhbAihEhZ5iP08dK1jWtBe7z0zuK17nvXLnFE48DiocO6xbPpYppUOoC9wettM7jEQDuAx_kUv5lP__NtYxTfsNnqwXUtDl2zA3-OTmrdBLj44xi9zx4Wk6dk_vr4PLmfJ4ZlxZBwKqC0WlQVLwnJMlPXorBQSw2Wl8yKqrZUF7XmEqQFyZjMmKEsE7WttOD5GF0d7va-22whDGrtgoGm0S1026BKkRecc7Y3r_81qZQk57RkIqr0oBrfheChVr13a-2_FCVqP7paqTi62o-uSKEiYnN3aCD-dufAq2ActAas82AGZTv3T_0LGkKK4g</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Bigaouette, Nicolas</creator><creator>Ackad, Edward</creator><creator>Ramunno, Lora</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</title><author>Bigaouette, Nicolas ; Ackad, Edward ; Ramunno, Lora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-516e9da6bb590022cff68def7aed594d6bfd1a8fa57e7de744724c1426fdba653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Coulomb potential</topic><topic>Finite-difference time domain</topic><topic>Mapping</topic><topic>Nonlinear grid mapping</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Quantum mechanics</topic><topic>Schroedinger equation</topic><topic>Simplification</topic><topic>Solvers</topic><topic>Three dimensional</topic><topic>Time-dependent Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bigaouette, Nicolas</creatorcontrib><creatorcontrib>Ackad, Edward</creatorcontrib><creatorcontrib>Ramunno, Lora</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bigaouette, Nicolas</au><au>Ackad, Edward</au><au>Ramunno, Lora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver</atitle><jtitle>Computer physics communications</jtitle><date>2012</date><risdate>2012</risdate><volume>183</volume><issue>1</issue><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We developed a straightforward yet effective method of increasing the accuracy of grid-based partial differential equation (PDE) solvers by condensing computational grid points near centers of interest. We applied this “nonlinear mapping” of grid points to a finite-differenced explicit implementation of a time-dependent Schrödinger equation solver in three dimensions. A particular multi-center mapping was developed for systems with multiple Coulomb potentials, allowing the solver to be used in complex configurations where symmetry cannot be used for simplification. We verified our method by finding the eigenstates and eigenenergies of the hydrogen atom and the hydrogen molecular ion ( H 2 + ) and comparing them to known solutions. We demonstrated that our nonlinear mapping scheme – which can be readily added to existing PDE solvers – results in a marked increase in accuracy versus a linear mapping with the same number of (or even much fewer) grid points, thus reducing memory and computational requirements by orders of magnitude. ► Uniform and orthogonal 3D grids are computationally heavy. ► Proposed nonlinear mapping of spatial coordinates concentrate points. ► Simple and easy to implement in existing codes and other PDE solvers. ► Suitable for 3D and many-centers, applied to a FDTD Schrödinger solver. ► H, H 2+ FDTD simulations show increased accuracy and reduction in running time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2011.08.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2012, Vol.183 (1), p.38-45
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_963855545
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Coulomb potential
Finite-difference time domain
Mapping
Nonlinear grid mapping
Nonlinearity
Partial differential equations
Quantum mechanics
Schroedinger equation
Simplification
Solvers
Three dimensional
Time-dependent Schrödinger equation
title Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20grid%20mapping%20applied%20to%20an%20FDTD-based,%20multi-center%203D%20Schr%C3%B6dinger%20equation%20solver&rft.jtitle=Computer%20physics%20communications&rft.au=Bigaouette,%20Nicolas&rft.date=2012&rft.volume=183&rft.issue=1&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2011.08.011&rft_dat=%3Cproquest_cross%3E1770351946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770351946&rft_id=info:pmid/&rft_els_id=S0010465511002839&rfr_iscdi=true