Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation
Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parame...
Gespeichert in:
Veröffentlicht in: | Engineering analysis with boundary elements 2012-02, Vol.36 (2), p.220-239 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 2 |
container_start_page | 220 |
container_title | Engineering analysis with boundary elements |
container_volume | 36 |
creator | Cheng, A.H.-D. |
description | Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation.
► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error. |
doi_str_mv | 10.1016/j.enganabound.2011.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963855410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799711001536</els_id><sourcerecordid>963855410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</originalsourceid><addsrcrecordid>eNqNUbtu3DAQJIIEyOXsf2CKII2lkKIkSqVxyAtwkMYB3BEUHw4PEikvKQPX-SNS5uv8JabunCBlqgV2Z2Z3dhB6S0lJCW0_7Evjb6WXQ1i8LitCaUl4SUj3Am1ox1lBe37zEm1I3zQF73v-Gr2JcU8IZYS0G_T72zImd7dIDU5h6TV2KeL4U84GzxLkZJKBx4dfl9gvk8kYOWLn701M7lYmFzwOFhuAAHjtTTKZC6yC1-44zKTBwMVRGNYTi2D_4IcDljC4BBIOeAajXFwpKkzzko7aZ-iVlWM05891i358-ni9-1Jcff_8dXd5VSjWsVQwy6VWdhgUI7ZRqqayaqmlhNFeaTaQSrPG1qqpuFK6alhd2870HdWVlpy2bIven3RnCHdL9iEmF5UZR-lNWKLoW9Y1TZ0Ft6g_IRWEGMFYMUM2DQdBiVgDEXvxTyBiDUQQLnIgmfvueYuM-Y0WpM-W_wpUNae07dZrdiecyZbvnQERlTNeGe3yk5LQwf3HticMMK1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963855410</pqid></control><display><type>article</type><title>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, A.H.-D.</creator><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><description>Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation.
► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2011.07.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algebra ; Arbitrary precision computation ; Collocation method ; Computation ; Condition number ; Derivatives ; Error analysis ; Error estimate ; Estimates ; Exact sciences and technology ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Multiquadric ; Number theory ; Optimization ; Partial differential equations ; Radial basis function ; Sciences and techniques of general use ; Shape parameter</subject><ispartof>Engineering analysis with boundary elements, 2012-02, Vol.36 (2), p.220-239</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</citedby><cites>FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2011.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24711686$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><title>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</title><title>Engineering analysis with boundary elements</title><description>Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation.
► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.</description><subject>Algebra</subject><subject>Arbitrary precision computation</subject><subject>Collocation method</subject><subject>Computation</subject><subject>Condition number</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Error estimate</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multiquadric</subject><subject>Number theory</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Sciences and techniques of general use</subject><subject>Shape parameter</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUbtu3DAQJIIEyOXsf2CKII2lkKIkSqVxyAtwkMYB3BEUHw4PEikvKQPX-SNS5uv8JabunCBlqgV2Z2Z3dhB6S0lJCW0_7Evjb6WXQ1i8LitCaUl4SUj3Am1ox1lBe37zEm1I3zQF73v-Gr2JcU8IZYS0G_T72zImd7dIDU5h6TV2KeL4U84GzxLkZJKBx4dfl9gvk8kYOWLn701M7lYmFzwOFhuAAHjtTTKZC6yC1-44zKTBwMVRGNYTi2D_4IcDljC4BBIOeAajXFwpKkzzko7aZ-iVlWM05891i358-ni9-1Jcff_8dXd5VSjWsVQwy6VWdhgUI7ZRqqayaqmlhNFeaTaQSrPG1qqpuFK6alhd2870HdWVlpy2bIven3RnCHdL9iEmF5UZR-lNWKLoW9Y1TZ0Ft6g_IRWEGMFYMUM2DQdBiVgDEXvxTyBiDUQQLnIgmfvueYuM-Y0WpM-W_wpUNae07dZrdiecyZbvnQERlTNeGe3yk5LQwf3HticMMK1q</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Cheng, A.H.-D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</title><author>Cheng, A.H.-D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Arbitrary precision computation</topic><topic>Collocation method</topic><topic>Computation</topic><topic>Condition number</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Error estimate</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multiquadric</topic><topic>Number theory</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Sciences and techniques of general use</topic><topic>Shape parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, A.H.-D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>36</volume><issue>2</issue><spage>220</spage><epage>239</epage><pages>220-239</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation.
► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2011.07.008</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2012-02, Vol.36 (2), p.220-239 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_963855410 |
source | Elsevier ScienceDirect Journals |
subjects | Algebra Arbitrary precision computation Collocation method Computation Condition number Derivatives Error analysis Error estimate Estimates Exact sciences and technology Interpolation Mathematical analysis Mathematical models Mathematics Multiquadric Number theory Optimization Partial differential equations Radial basis function Sciences and techniques of general use Shape parameter |
title | Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiquadric%20and%20its%20shape%20parameter%E2%80%94A%20numerical%20investigation%20of%20error%20estimate,%20condition%20number,%20and%20round-off%20error%20by%20arbitrary%20precision%20computation&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Cheng,%20A.H.-D.&rft.date=2012-02-01&rft.volume=36&rft.issue=2&rft.spage=220&rft.epage=239&rft.pages=220-239&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2011.07.008&rft_dat=%3Cproquest_cross%3E963855410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963855410&rft_id=info:pmid/&rft_els_id=S0955799711001536&rfr_iscdi=true |