Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation

Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2012-02, Vol.36 (2), p.220-239
1. Verfasser: Cheng, A.H.-D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 2
container_start_page 220
container_title Engineering analysis with boundary elements
container_volume 36
creator Cheng, A.H.-D.
description Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation. ► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.
doi_str_mv 10.1016/j.enganabound.2011.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963855410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799711001536</els_id><sourcerecordid>963855410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</originalsourceid><addsrcrecordid>eNqNUbtu3DAQJIIEyOXsf2CKII2lkKIkSqVxyAtwkMYB3BEUHw4PEikvKQPX-SNS5uv8JabunCBlqgV2Z2Z3dhB6S0lJCW0_7Evjb6WXQ1i8LitCaUl4SUj3Am1ox1lBe37zEm1I3zQF73v-Gr2JcU8IZYS0G_T72zImd7dIDU5h6TV2KeL4U84GzxLkZJKBx4dfl9gvk8kYOWLn701M7lYmFzwOFhuAAHjtTTKZC6yC1-44zKTBwMVRGNYTi2D_4IcDljC4BBIOeAajXFwpKkzzko7aZ-iVlWM05891i358-ni9-1Jcff_8dXd5VSjWsVQwy6VWdhgUI7ZRqqayaqmlhNFeaTaQSrPG1qqpuFK6alhd2870HdWVlpy2bIven3RnCHdL9iEmF5UZR-lNWKLoW9Y1TZ0Ft6g_IRWEGMFYMUM2DQdBiVgDEXvxTyBiDUQQLnIgmfvueYuM-Y0WpM-W_wpUNae07dZrdiecyZbvnQERlTNeGe3yk5LQwf3HticMMK1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963855410</pqid></control><display><type>article</type><title>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, A.H.-D.</creator><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><description>Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation. ► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2011.07.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algebra ; Arbitrary precision computation ; Collocation method ; Computation ; Condition number ; Derivatives ; Error analysis ; Error estimate ; Estimates ; Exact sciences and technology ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Multiquadric ; Number theory ; Optimization ; Partial differential equations ; Radial basis function ; Sciences and techniques of general use ; Shape parameter</subject><ispartof>Engineering analysis with boundary elements, 2012-02, Vol.36 (2), p.220-239</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</citedby><cites>FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2011.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24711686$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><title>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</title><title>Engineering analysis with boundary elements</title><description>Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation. ► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.</description><subject>Algebra</subject><subject>Arbitrary precision computation</subject><subject>Collocation method</subject><subject>Computation</subject><subject>Condition number</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Error estimate</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multiquadric</subject><subject>Number theory</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Sciences and techniques of general use</subject><subject>Shape parameter</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUbtu3DAQJIIEyOXsf2CKII2lkKIkSqVxyAtwkMYB3BEUHw4PEikvKQPX-SNS5uv8JabunCBlqgV2Z2Z3dhB6S0lJCW0_7Evjb6WXQ1i8LitCaUl4SUj3Am1ox1lBe37zEm1I3zQF73v-Gr2JcU8IZYS0G_T72zImd7dIDU5h6TV2KeL4U84GzxLkZJKBx4dfl9gvk8kYOWLn701M7lYmFzwOFhuAAHjtTTKZC6yC1-44zKTBwMVRGNYTi2D_4IcDljC4BBIOeAajXFwpKkzzko7aZ-iVlWM05891i358-ni9-1Jcff_8dXd5VSjWsVQwy6VWdhgUI7ZRqqayaqmlhNFeaTaQSrPG1qqpuFK6alhd2870HdWVlpy2bIven3RnCHdL9iEmF5UZR-lNWKLoW9Y1TZ0Ft6g_IRWEGMFYMUM2DQdBiVgDEXvxTyBiDUQQLnIgmfvueYuM-Y0WpM-W_wpUNae07dZrdiecyZbvnQERlTNeGe3yk5LQwf3HticMMK1q</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Cheng, A.H.-D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</title><author>Cheng, A.H.-D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3f7adcfbbc30f5cc41a261f10319cd3b02d35f4c527ccd25344f8e981d2da7163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Arbitrary precision computation</topic><topic>Collocation method</topic><topic>Computation</topic><topic>Condition number</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Error estimate</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multiquadric</topic><topic>Number theory</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Sciences and techniques of general use</topic><topic>Shape parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, A.H.-D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>36</volume><issue>2</issue><spage>220</spage><epage>239</epage><pages>220-239</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>Hardy’s multiquadric and its related interpolators have been found to be highly efficient for interpolating continuous, multivariate functions, as well as for the solution of partial differential equations. Particularly, the interpolation error can be dramatically reduced by varying the shape parameter to make the interpolator optimally flat. This improvement of accuracy is accomplished without reducing the fill distance of collocation points, that is, without the increase of computational cost. There exist a number of mathematical theories investigating the multiquadric family of radial basis functions. These theories are often not fully tested due to the computation difficulty associated with the ill-conditioning of the interpolation matrix. This paper overcomes this difficulty by utilizing arbitrary precision arithmetic in the computation. The issues investigated include conditional positive definiteness, error estimate, optimal shape parameter, traditional and effective condition numbers, round-off error, derivatives of interpolator, and the edge effect of interpolation. ► Multiquadric and Gaussian RBF are efficient interpolating functions and solving PDE. ► Interpolation error is reduced by varying shape parameter w/o reducing mesh size. ► Arbitrary precision computation is used to explore theoretical results. ► Investigated error estimate, optimal shape parameter, condition no., and roundoff error.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2011.07.008</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2012-02, Vol.36 (2), p.220-239
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_963855410
source Elsevier ScienceDirect Journals
subjects Algebra
Arbitrary precision computation
Collocation method
Computation
Condition number
Derivatives
Error analysis
Error estimate
Estimates
Exact sciences and technology
Interpolation
Mathematical analysis
Mathematical models
Mathematics
Multiquadric
Number theory
Optimization
Partial differential equations
Radial basis function
Sciences and techniques of general use
Shape parameter
title Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiquadric%20and%20its%20shape%20parameter%E2%80%94A%20numerical%20investigation%20of%20error%20estimate,%20condition%20number,%20and%20round-off%20error%20by%20arbitrary%20precision%20computation&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Cheng,%20A.H.-D.&rft.date=2012-02-01&rft.volume=36&rft.issue=2&rft.spage=220&rft.epage=239&rft.pages=220-239&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2011.07.008&rft_dat=%3Cproquest_cross%3E963855410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963855410&rft_id=info:pmid/&rft_els_id=S0955799711001536&rfr_iscdi=true