Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry

The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2011-12, Vol.59 (20), p.7602-7614
Hauptverfasser: Motemani, Yahya, McCluskey, Patrick J., Zhao, Chunwang, Tan, Ming J., Vlassak, Joost J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7614
container_issue 20
container_start_page 7602
container_title Acta materialia
container_volume 59
creator Motemani, Yahya
McCluskey, Patrick J.
Zhao, Chunwang
Tan, Ming J.
Vlassak, Joost J.
description The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C
doi_str_mv 10.1016/j.actamat.2011.08.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963853668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541100601X</els_id><sourcerecordid>963853668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</originalsourceid><addsrcrecordid>eNqFUMtO5DAQjNAiwQKfgJQL4pRgx_HrhBBaGCQeFzhbPU5beJTEgx2QcuMf-EO-BI9mtFcu_ZCqurqqKE4pqSmh4mJVg51ggKluCKU1UTVpxF5xSJVkVdNy9ifPjOtKtLw9KP6mtCKENrIlh8XD1Qj9nHwqgyuf_ffn1-OmLFyZXmGN5YBDiHMJfR_mVC7n0oZh6UeYQvTQlyOMwUKflwGnOB8X-w76hCe7flS83Px7vl5U90-3d9dX95Vlkk6VEpq5TjptO-SEArfYdrqjzimJxIJE22qKgITpRsmOL7HTeimkkNIRK9lRcb69u47h7R3TZAafLPY9jBjek9GCKc6EUBnJt0gbQ0oRnVnnXyHOhhKzSc-szC49s0nPEGVyepl3tlOAlA26CKP16T-5aSXnSpOMu9ziMNv98BhNsh5Hi52PaCfTBf-L0g85t4tJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963853668</pqid></control><display><type>article</type><title>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</title><source>Elsevier ScienceDirect Journals</source><creator>Motemani, Yahya ; McCluskey, Patrick J. ; Zhao, Chunwang ; Tan, Ming J. ; Vlassak, Joost J.</creator><creatorcontrib>Motemani, Yahya ; McCluskey, Patrick J. ; Zhao, Chunwang ; Tan, Ming J. ; Vlassak, Joost J.</creatorcontrib><description>The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C&lt;T&lt;850°C) changes with Ni concentration. For Ni⩽47 at.%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1−x, Hfx)2Ni enriches the surrounding matrix in Hf; for Ni⩾47.7 at.%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22°C&lt;T&lt;450°C) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti–Ni–Hf. This is attributed to the very small grain size (18±5nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.08.026</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Calorimetry ; Combinatorial analysis ; Cross-disciplinary physics: materials science; rheology ; Cycles ; Exact sciences and technology ; Hafnium ; High-temperature shape memory alloy ; Martensitic transformation ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanostructure ; Physics ; Stability ; Thermal cycling ; Thin film ; Titanium ; Transformation temperature</subject><ispartof>Acta materialia, 2011-12, Vol.59 (20), p.7602-7614</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</citedby><cites>FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541100601X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24755890$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Motemani, Yahya</creatorcontrib><creatorcontrib>McCluskey, Patrick J.</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Tan, Ming J.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><title>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</title><title>Acta materialia</title><description>The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C&lt;T&lt;850°C) changes with Ni concentration. For Ni⩽47 at.%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1−x, Hfx)2Ni enriches the surrounding matrix in Hf; for Ni⩾47.7 at.%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22°C&lt;T&lt;450°C) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti–Ni–Hf. This is attributed to the very small grain size (18±5nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.</description><subject>Applied sciences</subject><subject>Calorimetry</subject><subject>Combinatorial analysis</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cycles</subject><subject>Exact sciences and technology</subject><subject>Hafnium</subject><subject>High-temperature shape memory alloy</subject><subject>Martensitic transformation</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Stability</subject><subject>Thermal cycling</subject><subject>Thin film</subject><subject>Titanium</subject><subject>Transformation temperature</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUMtO5DAQjNAiwQKfgJQL4pRgx_HrhBBaGCQeFzhbPU5beJTEgx2QcuMf-EO-BI9mtFcu_ZCqurqqKE4pqSmh4mJVg51ggKluCKU1UTVpxF5xSJVkVdNy9ifPjOtKtLw9KP6mtCKENrIlh8XD1Qj9nHwqgyuf_ffn1-OmLFyZXmGN5YBDiHMJfR_mVC7n0oZh6UeYQvTQlyOMwUKflwGnOB8X-w76hCe7flS83Px7vl5U90-3d9dX95Vlkk6VEpq5TjptO-SEArfYdrqjzimJxIJE22qKgITpRsmOL7HTeimkkNIRK9lRcb69u47h7R3TZAafLPY9jBjek9GCKc6EUBnJt0gbQ0oRnVnnXyHOhhKzSc-szC49s0nPEGVyepl3tlOAlA26CKP16T-5aSXnSpOMu9ziMNv98BhNsh5Hi52PaCfTBf-L0g85t4tJ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Motemani, Yahya</creator><creator>McCluskey, Patrick J.</creator><creator>Zhao, Chunwang</creator><creator>Tan, Ming J.</creator><creator>Vlassak, Joost J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</title><author>Motemani, Yahya ; McCluskey, Patrick J. ; Zhao, Chunwang ; Tan, Ming J. ; Vlassak, Joost J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Calorimetry</topic><topic>Combinatorial analysis</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cycles</topic><topic>Exact sciences and technology</topic><topic>Hafnium</topic><topic>High-temperature shape memory alloy</topic><topic>Martensitic transformation</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Stability</topic><topic>Thermal cycling</topic><topic>Thin film</topic><topic>Titanium</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motemani, Yahya</creatorcontrib><creatorcontrib>McCluskey, Patrick J.</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Tan, Ming J.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motemani, Yahya</au><au>McCluskey, Patrick J.</au><au>Zhao, Chunwang</au><au>Tan, Ming J.</au><au>Vlassak, Joost J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</atitle><jtitle>Acta materialia</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>59</volume><issue>20</issue><spage>7602</spage><epage>7614</epage><pages>7602-7614</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C&lt;T&lt;850°C) changes with Ni concentration. For Ni⩽47 at.%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1−x, Hfx)2Ni enriches the surrounding matrix in Hf; for Ni⩾47.7 at.%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22°C&lt;T&lt;450°C) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti–Ni–Hf. This is attributed to the very small grain size (18±5nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.08.026</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2011-12, Vol.59 (20), p.7602-7614
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_963853668
source Elsevier ScienceDirect Journals
subjects Applied sciences
Calorimetry
Combinatorial analysis
Cross-disciplinary physics: materials science
rheology
Cycles
Exact sciences and technology
Hafnium
High-temperature shape memory alloy
Martensitic transformation
Materials science
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Nanostructure
Physics
Stability
Thermal cycling
Thin film
Titanium
Transformation temperature
title Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Ti%E2%80%93Ni%E2%80%93Hf%20shape%20memory%20alloys%20by%20combinatorial%20nanocalorimetry&rft.jtitle=Acta%20materialia&rft.au=Motemani,%20Yahya&rft.date=2011-12-01&rft.volume=59&rft.issue=20&rft.spage=7602&rft.epage=7614&rft.pages=7602-7614&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.08.026&rft_dat=%3Cproquest_cross%3E963853668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963853668&rft_id=info:pmid/&rft_els_id=S135964541100601X&rfr_iscdi=true