Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry
The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases line...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2011-12, Vol.59 (20), p.7602-7614 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7614 |
---|---|
container_issue | 20 |
container_start_page | 7602 |
container_title | Acta materialia |
container_volume | 59 |
creator | Motemani, Yahya McCluskey, Patrick J. Zhao, Chunwang Tan, Ming J. Vlassak, Joost J. |
description | The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C |
doi_str_mv | 10.1016/j.actamat.2011.08.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963853668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541100601X</els_id><sourcerecordid>963853668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</originalsourceid><addsrcrecordid>eNqFUMtO5DAQjNAiwQKfgJQL4pRgx_HrhBBaGCQeFzhbPU5beJTEgx2QcuMf-EO-BI9mtFcu_ZCqurqqKE4pqSmh4mJVg51ggKluCKU1UTVpxF5xSJVkVdNy9ifPjOtKtLw9KP6mtCKENrIlh8XD1Qj9nHwqgyuf_ffn1-OmLFyZXmGN5YBDiHMJfR_mVC7n0oZh6UeYQvTQlyOMwUKflwGnOB8X-w76hCe7flS83Px7vl5U90-3d9dX95Vlkk6VEpq5TjptO-SEArfYdrqjzimJxIJE22qKgITpRsmOL7HTeimkkNIRK9lRcb69u47h7R3TZAafLPY9jBjek9GCKc6EUBnJt0gbQ0oRnVnnXyHOhhKzSc-szC49s0nPEGVyepl3tlOAlA26CKP16T-5aSXnSpOMu9ziMNv98BhNsh5Hi52PaCfTBf-L0g85t4tJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963853668</pqid></control><display><type>article</type><title>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</title><source>Elsevier ScienceDirect Journals</source><creator>Motemani, Yahya ; McCluskey, Patrick J. ; Zhao, Chunwang ; Tan, Ming J. ; Vlassak, Joost J.</creator><creatorcontrib>Motemani, Yahya ; McCluskey, Patrick J. ; Zhao, Chunwang ; Tan, Ming J. ; Vlassak, Joost J.</creatorcontrib><description>The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C<T<850°C) changes with Ni concentration. For Ni⩽47 at.%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1−x, Hfx)2Ni enriches the surrounding matrix in Hf; for Ni⩾47.7 at.%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22°C<T<450°C) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti–Ni–Hf. This is attributed to the very small grain size (18±5nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.08.026</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Calorimetry ; Combinatorial analysis ; Cross-disciplinary physics: materials science; rheology ; Cycles ; Exact sciences and technology ; Hafnium ; High-temperature shape memory alloy ; Martensitic transformation ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanostructure ; Physics ; Stability ; Thermal cycling ; Thin film ; Titanium ; Transformation temperature</subject><ispartof>Acta materialia, 2011-12, Vol.59 (20), p.7602-7614</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</citedby><cites>FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541100601X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755890$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Motemani, Yahya</creatorcontrib><creatorcontrib>McCluskey, Patrick J.</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Tan, Ming J.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><title>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</title><title>Acta materialia</title><description>The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C<T<850°C) changes with Ni concentration. For Ni⩽47 at.%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1−x, Hfx)2Ni enriches the surrounding matrix in Hf; for Ni⩾47.7 at.%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22°C<T<450°C) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti–Ni–Hf. This is attributed to the very small grain size (18±5nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.</description><subject>Applied sciences</subject><subject>Calorimetry</subject><subject>Combinatorial analysis</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cycles</subject><subject>Exact sciences and technology</subject><subject>Hafnium</subject><subject>High-temperature shape memory alloy</subject><subject>Martensitic transformation</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Stability</subject><subject>Thermal cycling</subject><subject>Thin film</subject><subject>Titanium</subject><subject>Transformation temperature</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUMtO5DAQjNAiwQKfgJQL4pRgx_HrhBBaGCQeFzhbPU5beJTEgx2QcuMf-EO-BI9mtFcu_ZCqurqqKE4pqSmh4mJVg51ggKluCKU1UTVpxF5xSJVkVdNy9ifPjOtKtLw9KP6mtCKENrIlh8XD1Qj9nHwqgyuf_ffn1-OmLFyZXmGN5YBDiHMJfR_mVC7n0oZh6UeYQvTQlyOMwUKflwGnOB8X-w76hCe7flS83Px7vl5U90-3d9dX95Vlkk6VEpq5TjptO-SEArfYdrqjzimJxIJE22qKgITpRsmOL7HTeimkkNIRK9lRcb69u47h7R3TZAafLPY9jBjek9GCKc6EUBnJt0gbQ0oRnVnnXyHOhhKzSc-szC49s0nPEGVyepl3tlOAlA26CKP16T-5aSXnSpOMu9ziMNv98BhNsh5Hi52PaCfTBf-L0g85t4tJ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Motemani, Yahya</creator><creator>McCluskey, Patrick J.</creator><creator>Zhao, Chunwang</creator><creator>Tan, Ming J.</creator><creator>Vlassak, Joost J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</title><author>Motemani, Yahya ; McCluskey, Patrick J. ; Zhao, Chunwang ; Tan, Ming J. ; Vlassak, Joost J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8693fd7f9cde501a5ce4d9d1ff87e0ca7ec491eae039287d5bed99b67677f0c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Calorimetry</topic><topic>Combinatorial analysis</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cycles</topic><topic>Exact sciences and technology</topic><topic>Hafnium</topic><topic>High-temperature shape memory alloy</topic><topic>Martensitic transformation</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Stability</topic><topic>Thermal cycling</topic><topic>Thin film</topic><topic>Titanium</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motemani, Yahya</creatorcontrib><creatorcontrib>McCluskey, Patrick J.</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Tan, Ming J.</creatorcontrib><creatorcontrib>Vlassak, Joost J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motemani, Yahya</au><au>McCluskey, Patrick J.</au><au>Zhao, Chunwang</au><au>Tan, Ming J.</au><au>Vlassak, Joost J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry</atitle><jtitle>Acta materialia</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>59</volume><issue>20</issue><spage>7602</spage><epage>7614</epage><pages>7602-7614</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The martensitic transformation in Ti–Ni–Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite–austenite transformation temperature is significantly lower than in bulk Ti–Ni–Hf, but increases linearly with Hf content at a rate comparable to bulk Ti–Ni–Hf. The response to high-temperature cycling (22°C<T<850°C) changes with Ni concentration. For Ni⩽47 at.%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1−x, Hfx)2Ni enriches the surrounding matrix in Hf; for Ni⩾47.7 at.%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22°C<T<450°C) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti–Ni–Hf. This is attributed to the very small grain size (18±5nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.08.026</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2011-12, Vol.59 (20), p.7602-7614 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_963853668 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Calorimetry Combinatorial analysis Cross-disciplinary physics: materials science rheology Cycles Exact sciences and technology Hafnium High-temperature shape memory alloy Martensitic transformation Materials science Metals. Metallurgy Methods of deposition of films and coatings film growth and epitaxy Nanostructure Physics Stability Thermal cycling Thin film Titanium Transformation temperature |
title | Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Ti%E2%80%93Ni%E2%80%93Hf%20shape%20memory%20alloys%20by%20combinatorial%20nanocalorimetry&rft.jtitle=Acta%20materialia&rft.au=Motemani,%20Yahya&rft.date=2011-12-01&rft.volume=59&rft.issue=20&rft.spage=7602&rft.epage=7614&rft.pages=7602-7614&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.08.026&rft_dat=%3Cproquest_cross%3E963853668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963853668&rft_id=info:pmid/&rft_els_id=S135964541100601X&rfr_iscdi=true |